
1Function Approximation with XCS:

Hyperellipsoidal Conditions, Recursive Least

Squares, and Compaction
Martin V. Butz⋆, Pier Luca Lanzi†, Stewart W. Wilson‡

⋆Department of Cognitive Psychology

University of Würzburg

Röntgenring 11, 97070 Würzburg, Germany

butz@psychologie.uni-wuerzburg.de

†Artificial Intelligence and Robotics Laboratory

Dipartimento di Elettronica e Informazione

Milano 20133, Italy

pierluca.lanzi@polimi.it

‡Prediction Dynamics

Concord, MA 01742, USA

wilson@prediction-dynamics.com
Abstract

An important strength of learning classifier systems (LCSs)lies in the combination of genetic optimization tech-

niques with gradient-based approximation techniques. Thechosen approximation technique develops locally optimal

approximations, such as accurate classification estimates, Q-value predictions, or linear function approximations.

The genetic optimization technique is designed to distribute these local approximations efficiently over the problem

space. Together, the two components develop a distributed,locally optimized problem solution in the form of a

population of expert rules, often called classifiers. In function approximation problems, the XCSF classifier system

develops a problem solution in the form of overlapping, piecewise linear approximations. This paper shows that

XCSF performance on function approximation problems additively benefits from (1) improved representations, (2)

improved genetic operators, and (3) improved approximation techniques. Additionally, this paper introduces a novel

closest classifier matching mechanism for the efficient compaction of XCS’s final problem solution. The resulting

compaction mechanism can boil the population size down by 90% on average, while decreasing prediction accuracy

only marginally. Performance evaluations show that the additional mechanisms enable XCSF to reliably, accurately,

and compactly approximate even seven dimensional functions. Performance comparisons with other, heuristic function

approximation techniques show that XCSF yields competitive or even superior noise-robust performance.

Index Terms

Learning classifier systems, LCS, XCS, function approximation, hyperellipsoids, condensation, compaction, self

organization, neural networks.

DRAFT

I. I NTRODUCTION

Learning classifier systems (LCSs) are rule-based, evolutionary learning systems that are designed to efficiently

combine gradient-based approximation techniques with evolutionary optimization techniques. The XCS classifier

system, introduced by Wilson in 1995 [1], may be regarded as the most prominent learning classifier system (LCS)

to-date. XCS is an accuracy-based LCS that it is designed to learn maximally accurate predictions for any given

input and available action combination. Its function approximation form, XCSF [2], [3], develops overlapping,

piecewise-linear function approximations.

It was shown that the combination of local gradient-based optimization and global, evolutionary-based op-

timization in XCS(F) yields a flexible, iterative learning algorithm. XCS was successfully applied to large

binary classification tasks [4], [5], [1], [6], real-world datamining problems [7], [8], [9], [10], [11], challenging

reinforcement learning problems [9], [12], and function approximation problems [3], [13], [9]. These successful

applications confirm the flexibility of the XCS learning architecture. Moreover, theoretical analyses of XCS have

confirmed that the system is guaranteed to evolve accurate problem solutions for a wide range of problems with

high probability in polynomial time [14].

Most recently, extensions of XCSF have focused on improvingcondition structures as well as predictive

capabilities. Condition structures have been modified to represent and evolve different hyperrectangular structures

[15], [11], [3] as well as other condition structures including various spheroids [16], [9], [17], convex hulls [18], and

tile codings [12]. Linear approximations have been extended to polynomial predictions [13]. Moreover, the predictive

capabilities have been improved by replacing the original least-mean-square delta rule [19] with the pseudo-inverse

method, recursive least squares (RLS) method [13], [20], orKalman-filtering-based approximation techniques [21].

Additionally, the XCS framework has been successfully combined with pure NN-based approximation techniques

[22], [23].

This paper aims at putting these advancements in perspective, comparing hyperrectangular with hyperellipsoidal

condition structures on a variety of function approximation problems. We examine the improvements achieved

due to both the modified condition structure and the improvedlinear approximation technique, that is, RLS. The

introduced improvements confirm that XCS performance can beadditively optimized (1) in its space partitioning

representation, (2) in the evolutionary operators, and (3)in the linear approximation technique.

Moreover, this paper addresses problem solution compaction. Since XCSF relies on a population-based learning

technique (the evolutionary learning component), problemsolutions are represented redundantly by multiple,

similar, strongly overlapping classifiers. Thus, an important part of LCS-based approximation is effective population

compaction [24], [25]. To develop a final, complete, but compact problem solution, we introduce a novel compaction

approach, which relies on a competitive matching mechanism, termedclosest classifier matching. The results show

that compaction works highly effective. During compaction, the population size often decreases by over90% while

hardly affecting function approximation accuracy.

2

Finally, this paper compares XCSF performance with other function approximation techniques available in the

literature. We show that XCSF clearly outperforms pure clustering mechanisms, exemplified in the Neural GAS

architecture [26], [27]. We also show that XCSF evolves solutions similar to those generated by a constructive,

incremental learning approach [28] as well as similar to an incremental learning linear model tree algorithm

[29]. Performance is competitive showing successful generalization capabilities, accurate approximations, and noise

robustness. In comparison to the other algorithms, though,XCSF is the most flexible learning algorithm, applicable

to a large variety of problems.

This paper is structured as follows. First, we give a short introduction to the XCSF system. Next, we show how

hyperellipsoidal condition structures can improve systemperformance. Following that, we show the more robust

RLS technique for linear approximation. Finally, we introduce the compaction mechanisms. A performance suite

on functions of up to seven dimensions confirms the strength and robustness of the introduced mechanisms. Finally,

we compare XCSF with the Neural GAS clustering algorithm andtwo statistical, incremental learning approaches.

Summary and conclusions put the results in a broader perspective.

II. XCSF OVERVIEW

XCS is a typical Michigan-style learning classifier system (LCS) [30], [31]. The following introduction of

XCS describes the enhanced XCS system for function approximation, often termed XCSF [11], [3]. For detailed

information on XCS the interested reader is referred to the algorithmic description of XCS [32].

A. Representation

XCSF is a function approximation system that evolves overlapping, typically piecewise linear function approxi-

mations. Given at timet an input vector~xt = (x1, ..., xn) ∈ S ⊆ ℜn, XCSF determines its function value prediction

P and receives as feedback the actual function valueyt. Using this information, XCSF iteratively evolves its solution

representation within a population ofclassifiers(condition-prediction rules). Each classifier specifies inits condition

part its applicability, and in its prediction part its function value prediction—typically a linear prediction. Thus XCSF

is a locally weighted learning approach [33], but one in which the local rule structures (classifiers) evolve by the

means of a genetic algorithm. The classifiers partition the input space into overlapping, piecewise linear prediction

surfaces. The resulting smoothed surface forms the function approximation surface.

More formally, a classifier in XCSF consists of a conditionC, a predictionR, a prediction errorε, and a

fitness valueF . (1) The condition partC specifies a hyperrectangle by the means of interval encoding, that is,

C = (~l, ~u) = ((l1, l2, ..., ln)T , (u1, u2, ..., un)T), where T denotes the transpose (~l and ~u are column vectors).

(2) The predictionR specifies a linear prediction of the input vectorxt in the form of a weight vector, that is,

R = ~w = (w0, w1, ..., wn)T wherew0 is the offset weight. The prediction is determined by the inner product

(~x∗ − ~l∗)T ~w where vectors~x∗ and ~l∗ are vectors~x and~l, enhanced with a leading one and zero, respectively. (3)

3

The prediction errorε estimates the mean absolute deviation of the reward predictions. (4) The fitnessF specifies the

relative predictive accuracy of the classifier. While the condition parts evolve by the means of a genetic algorithm,

the other components are iteratively approximated by the least-mean-square update technique [19].

B. Gradient-Based Rule Updates

Each learning iteration, XCSF generates a match set[M] that contains all classifiers whose conditions match

the input vector~xt. The match set is used to generate the function value prediction. Given input vector~xt, each

classifiercl forms the predictioncl.Pt = (~x∗
t − cl.~l∗)T cl. ~w. The fitness-weighted average of the predictions of all

matching classifiers denotes the function value prediction, that is,Pt =
∑

c∈[M] c.Ptc.F/
∑

c∈[M] c.F .

The error signal to update reward prediction, prediction error, and fitness is the error between a classifier prediction

and the actual value:yt − (~x∗
t − ~l∗)T ~w. Each classifier in[M] is updated according to its error signal using the

delta update rule:

~w ← ~w + η(yt − (~x∗
t − ~l∗)T ~w)(~x∗

t − ~l∗), (1)

whereη denotes the learning rate.1 The reward prediction error approximates the mean absolutedeviation of its

prediction by the following delta rule:

ε← ε + η(|yt − (~x∗
t − ~l∗)T ~w| − ε) (2)

Classifier accuracy is determined by the scaled inverse of the error, whereby classifiers with mean absolute error

lower thanǫ0 are considered completely accurate. The fitness value is derived from the relative classifier accuracy

in [M] [32]. Thus, fitness reflects the current predictive quality of a classifier in comparison to all overlapping

classifiers. The evolutionary algorithm selects classifiers dependent on their current fitness values. After rule updates

and possible GA invocation in the current match set, the nextiteration begins.

C. Rule Structure Evolution

XCSF is initialized with an empty population. Initial classifiers are generated by a covering mechanism that

creates a matching condition given a problem instance~x for which no classifier matches. The resulting interval

size lies between0 and2r0 uniformly random in each dimension, wherer0 is an additional XCSF parameter that

determines the width of initial classifiers.

Most classifiers (i.e., classifiers not generated by covering) are generated by the evolutionary component for

which XCS applies a steady-state, niche GA. A GA is invoked ifthe average time since the last GA application

upon the classifiers in[M] exceeds a thresholdθGA. The GA selects two parent classifiers from the current match

1Wilson [3] used a modified delta rule, instead, to stabilize the update mechanism. Comparative runs did not show any performance differences

in the experiments reported in this paper.

4

set [M] using set-size-relative tournament selection based on theclassifier’s fitness estimates [4]. Two offspring are

generated from the selected parents. Each attribute of the offspring conditions is mutated with probabilityµ. In the

hyperrectangular representation, mutation alters the lower or upper boundary by increasing/decreasing its stretch,

maximally doubling/halving the covered interval, respectively. For recombination, we utilize uniform crossover, in

which any corresponding values in the two classifier conditions are exchanged with probability0.5.

Before the offspring are inserted in the population, two classifiers may be deleted to keep a fixed population size

N . Classifiers are deleted from[P] with probability proportional to an estimate of the size of the match sets that

the classifiers occur in. If the classifier is sufficiently experienced and its fitnessF is significantly lower than the

average fitness of classifiers in[P], its deletion probability is further increased [34].

D. XCSF Learning Intuition

As can be seen, XCSF relies on the following two major learning components: (1) The gradient-based component

generates linear approximations and estimates classifier utility based on the relative accuracy of the generated linear

approximations. (2) The evolutionary component relies on these utility estimates (represented in classifier fitness)

to evolve better classifiers by reproducing more accurate classifiers and deleting less accurate ones (on average).

The interplay between the two learning components is crucial for the development of the evolution of an effective,

global solution. The gradient component needs to produce classifier utility guesses as fast as possible in order for

XCSF to propagate more accurate classifiers effectively. Faster and more reliable estimates avoid misleading signals

for the evolutionary component. On the other hand, the evolutionary component needs to evolve better classifier

structures as fast as possible for the task at hand. This gives room for representational and operator improvements

on the GA side. In Section III we investigate the interplay ofthese two mechanisms. We show how important

an effective representation of conditions, plus fast and accurate parameter estimates are for quick, accurate, and

reliable learning.

So far we have seen that XCSF is designed to evolve accurate rules. Generalization is achieved by a continuous

generalization pressure [5], [1] due to classifier reproduction in [M] and deletion from[P]. Since more-general

classifiers match on average more often than the average classifier in [P], they are reproduced more often. Moreover,

reproduction in[M] has a niching effect ensuring that only related classifier structures are recombined. Finally,

the mechanism also ensures complete coverage of the encountered problem space since overrepresented subspaces

undergo more deletions while reproduction is occurrence-based [35].

In sum, the evolutionary mechanism is designed to evolve partitions in which linear approximations are maximally

accurate. The gradient descent-based algorithm is responsible for estimating the suitability of the current partitions.

Thus, XCS applies a distributed, local search mechanism combining evolutionary techniques with gradient learning

techniques to find a global problem solution. As a whole, XCS strives to evolve complete, maximally accurate, and

maximally general function approximations represented inits population of classifiers.

5

Due to this combination of gradient-based and evolutionary-based learning techniques, XCSF is particularly

applicable in problem domains in which gradient techniquesalone are not guaranteed to converge to an optimal

problem solution, or in which problem partitions are required that cannot be shaped by gradient information. In

XCS, gradient information is only necessary to yield locally optimal approximations. The development of a suitable

space partitioning, which yields a globally optimal solution in conjunction with the local approximations, is the

responsibility of the evolutionary learning component.

From a machine learning perspective, XCSF can be compared toiterative clustering mechanisms. In principle,

it works similarly to an expectation maximization (EM) algorithm [36]. The expectation step is accomplished by

the matching technique in combination with classifier predictions. The maximization step is realized by the genetic

algorithm, which depends on accurate parameter estimates.Hereby, not only a pre-defined cluster distance measure

is maximized but also the accuracy of classifier predictions. This makes XCSF an iterative clustering mechanism

that clusters the input space for the generation of maximally accurate predictions. Performance comparisons with

the Neural GAS algorithm [26], [27] in Section V-D.3 confirm that XCSF is able to generate much more accurate

and general function approximation representations.

Before we compare XCSF to other function approximation techniques, though, we investigate performance on

a set of two dimensional functions and subsequently show howperformance can be improved in approximation

accuracy and in solution compactness.

E. Performance on 2-D Functions

We now show how XCSF evolves accurate function approximations in exemplary 2-D functions. In the subsequent

sections we then show how learning in XCSF can be improved by generating hyperellipsoidal condition structures,

enabling efficient search through these structures, and improving the gradient-based approximation mechanism.

We first test unenhanced XCSF on the following functions to illustrate its general approximation performance:

f1(x, y) = sin(2π(x)) + sin(2π(y)); f2(x, y) = sin(2π(x + y)); f3(x, y) = sin(4π(x + y)). (3)

All three functions are continuous and continuously differentiable. The domain of all functions in this paper is

S = [0, 1)n. Figure 1 shows the three functions. Functionf1 is a simple sine function, in which each dimension is

independent of the others. In functionsf2 andf3, the dimensions are interdependent. The sine wave lies obliquely

in the two dimensions. Functionf3 makes the problem harder since four full sine waves lie in theproblem domain.

It is interesting to note that Functionf1 actually resembles a checkerboard problem [37], with variable side

lengths in the grid. That is, each dimension contributes to the solution independently. Thus, to reach a certain

accuracy, the sine function needs to be suitably partitioned in each dimension, dependent on the curvature of the

sine wave. These partitions are independent in each dimension resulting in the checkerboard layout. In functionsf2

andf3, the partitionings rather resemble uniform, oblique subspaces. Figure 1 indicates curvature-dependent space

6

partitions. These partitions can be expected to be approximated with any piecewise linear function approximation

mechanism - albeit with varying granularity and exactness.

00.20.40.60.81

0
0.2

0.4
0.6

0.8
1

-4

-3

-2

-1

0

1

sin(2 x)+sin(2 y)p p

x

y

f (x,y)1

0
0.2

0.4
0.6

0.8
1 0

0.2
0.4

0.6
0.8

1-2

-1.5

-1

-0.5

0

0.5

1

f (x,y)2

x y

sin(2 (x+y))p

0
0.2

0.4
0.6

0.8
1 0

0.2
0.4

0.6
0.8

1-2

-1.5

-1

-0.5

0

0.5

1

sin(4 (x+y))p

x y

f (x,y)3

Fig. 1. The axis-parallel sinusoidal functionf1 as well as the axis-diagonal sinusoidal functionf2 appear similarly difficult, whereas the

increased curvature in the axis-diagonal sinusoidal function f3 results in a less accurate approximation, a longer learningeffort, and a larger

number of distinct classifiers.

Predictive performance of XCSF is shown in Figure 2.2 The runs start with a fairly general population allowing

the genetic pressure and mutation to introduce more specialized offspring. The parameter values are nearly identical

to the values chosen in Wilson’s work [3]. Functionf1 is learned best, resulting in a low error of about.02—slightly

above the error thresholdε0 = .01. The axis-diagonal functionf2 is initially slightly easier to approximate, due to its

smaller y-value range. While learning proceeds, the population size rises to a higher level and the prediction again

just reaches.02. When we double the number of sine waves (functionf3), approximation capabilities strongly break

down: accuracy performance does not even get close to the targeted.01 accuracy level. Due to the obliqueness of

the function, the hyperrectangular conditions make it hardto evolve an effective space partitioning. Also, population

sizes do not decrease, indicating that no appropriate generalizations in the space partitions are found.

The learning rateβ slightly influences approximation performance further. Inthe case of largerβ values, learning

is slightly delayed, most likely due to the higher variance in initial classifier estimates. Later, though, more stable

performance can be observed. The larger number of macro classifiers indicates that a largerβ value causes more

variability in the population.

The results indicate that the hyperrectangular structure does not appear to be suitable for the approximation of

smooth functions. Especially when the function lies obliquely in the two dimensions, performance breaks down

quickly. Due to the corners of the hyperrectangles, strangeoverlap effects can be expected to distort the function

approximation capability.

2All experiments herein are averaged over 20 experiments. Ifnot stated differently, parameters were set as follows:N = 6400, β = .1,

η = .5, α = 1, ε0 = .01, ν = 5, θGA = 50, χ = 1.0, µ = .05, r0 = 1, θdel = 20, δ = 0.1, θsub = 20. GA subsumption was applied.

Uniform crossover was applied. The error bars and numerical± values indicate the respective unbiased standard deviation values.

7

III. I MPROVING CONDITIONS AND PREDICTIONS

To eliminate unsuitable overlap effects and consequently evolve smoother approximation surfaces, we now enable

the evolution of ellipsoidal condition structures showingtheir effect on function approximation performance. The

resulting general hyperellipsoids do not have the unsuitably overlapping corners of the hyperrectangles, nor do they

need to have an axis-parallel orientation. Additionally, we show that the predictions can be accurately estimated

faster by using the recursive least squares (RLS) approximation.

A. Axis-Parallel Hyperellipsoids

First, we enable the evolution of axis-parallel hyperellipsoidal structures. Conditions are now represented by

C = (~m,~σ) = ((m1, ..., mn)T , (σ1, ..., σn)T), (4)

where the column vectors~m and ~σ indicate the center of the ellipsoid and the deviations in the n dimensions,

respectively. A Gaussian kernel function is used to determine the current activity of a classifier:

cl.act = exp

(

−
n
∑

i=1

(xi −mi)
2

2σ2
i

)

, (5)

effectively dividing in each dimension the squared distance from the center by twice the variance in that dimension.

A classifier is considered part of the current match set if itsactivity cl.act lies above the thresholdθm, which is

set to .7 throughout the experiments (which corresponds to a radius of .845 within which the classifier matches,

given all σi = 1). To form classifier predictions, the zero-enhanced lower bound of the condition~l∗ of Equation 1

is replaced with the similarly enhanced center~m∗ .

The following other parts of the learning mechanism of XCSF are affected by the changed condition structure

representation: (1) the covering mechanism, (2) mutation and crossover, and (3) the subsumption mechanism.

Covering sets the center of the condition (~m) to the current instance value (~xt). Entries of the deviation vector~σ

are each chosen independently, uniformly randomly betweenzero andr0 (excluding zero). During mutation, each

attribute in the condition part is mutated with probabilityµ. If an attribute of the center is mutated, the new valuem′
i

is set to a value uniformly randomly chosen in the interval the classifier applies in, that is,|mi−m′
i| ≤ σi

√
−2 ln θm.

The standard deviation valuesσi are either increased or decreased (equally likely), maximally doubling or halving

the values. If anyσi is larger than the deviation necessary to contain the whole problem dimension, it is set to that

value, that is:

∀i : σi ≤
u′

i − l′i√
−2 ln θm

, (6)

whereu′
i andl′i denote the maximum and minimum value of problem dimensioni, respectively. Uniform crossover

treats all values independently exchanging values with a50% probability. During subsumption, a classifier is

considered more general, if it completely contains the other classifier in alln dimensions considered separately.

8

 0.001

 0.01

 0.1

 1

 0 50 100 150 200 250 300 350 400

pr
ed

. e
rr

or
, m

ac
ro

 c
l.

(/
25

.6
k)

number of learning steps (1000s)

XCSF, Hyper.Rect. in f1: sin(2 π x)+sin(2 π y)

β=.5: pred.error
macro cl.

β=.1: pred.error
macro cl.

 0.001

 0.01

 0.1

 1

 0 50 100 150 200 250 300 350 400

pr
ed

. e
rr

or
, m

ac
ro

 c
l.

(/
25

.6
k)

number of learning steps (1000s)

XCSF, Hyper.Rect. in f2: sin(2 π (x+y))

β=.5: pred.error
macro cl.

β=.1: pred.error
macro cl.

 0.001

 0.01

 0.1

 1

 0 50 100 150 200 250 300 350 400

pr
ed

. e
rr

or
, m

ac
ro

 c
l.

(/
25

.6
k)

number of learning steps (1000s)

XCSF, Hyper.Rect. in f3: sin(4 π (x+y))

β=.5: pred.error
macro cl.

β=.1: pred.error
macro cl.

Fig. 2. XCSF is able to learn the three test functions with increasingly

less success. The axis-parallel sinusoidal functionf1 as well as the

axis-diagonal sinusoidal functionf2 appear similarly difficult whereas

the increased curvature in the axis-diagonal sinusoidal function f3

results in a less accurate approximation, a longer learningeffort, and

a larger number of distinct classifiers.

 0.001

 0.01

 0.1

 1

 0 50 100 150 200 250 300 350 400

pr
ed

. e
rr

or
, m

ac
ro

 c
l.

(/
25

.6
k)

number of learning steps (1000s)

XCSF, Axis-Parallel HyperEllipsoid in f1: sin(2 π x)+sin(2 π y)

β=.5: pred.error
macro cl.

β=.1: pred.error
macro cl.

 0.001

 0.01

 0.1

 1

 0 50 100 150 200 250 300 350 400

pr
ed

. e
rr

or
, m

ac
ro

 c
l.

(/
25

.6
k)

number of learning steps (1000s)

XCSF, Axis-Parallel HyperEllipsoid in f2: sin(2 π (x+y))

β=.5: pred.error
macro cl.

β=.1: pred.error
macro cl.

 0.001

 0.01

 0.1

 1

 0 50 100 150 200 250 300 350 400

pr
ed

. e
rr

or
, m

ac
ro

 c
l.

(/
25

.6
k)

number of learning steps (1000s)

XCSF, Axis-Parallel HyperEllipsoid in f3: sin(4 π (x+y))

β=.5: pred.error
macro cl.

β=.1: pred.error
macro cl.

Fig. 3. Hyperellipsoidal conditions alleviate the problemof un-

suitable overlaps due to the original hyper-rectangular representation.

Higher accuracy is reached faster by XCSF with axis-parallel, hyper-

ellipsoidal condition structures. Nonetheless, in the oblique, strongly

curved functionf3, the targeted accuracy level of.01 is still not

reached.

9

Performance on the test functionsf1, f2, f3 (Figure 3) shows that the hyperellipsoidal structures clearly outperform

the hyperrectangular structures (cf. Figure 2). In the axis-parallel sine functionf1, performance reaches the targeted

accuracy level of.01. Also in the axis-diagonal functionsf2 andf3 performance reaches higher accuracy. However,

in the harder oblique functionf3, the targeted maximum error of.01 still cannot be reached.

Despite the improvements, performance still remains unsatisfactory in functionf3. One big problem of the axis-

parallel hyperellipsoidal encoding is that the orientation of the hyperellipsoids cannot account for the obliqueness

in the function. Thus, we now proceed and enable the rotationof the developing hyperellipsoid in the input space.

B. General Hyperellipsoids

To enable rotation of the hyperellipsoids, we endow the condition structure with a full transformation matrix that

enables stretching and rotation of the evolving hyperellipsoidal structures. A condition is now defined as:

C = (~m, Σ) = ((m1, m2, ..., mn)T , σ1,1, σ1,2..., σn,n−1σn,n), (7)

where ~m denotes the center of the hyperellipsoid and matrixΣ the transformation matrix of the condition. In this

way, each condition effectively defines its own space transformation encoding separate Mahalanobis distances [33]

in each classifier.

The consequent activity of a classifier is now defined as:

cl.act = exp

(

− (~x− ~m)T ΣT Σ(~x − ~m)

2

)

, (8)

effectively multiplying the full transformation matrix with the vector difference~x− ~m. The general hyperellipsoid

coincides with the previous axis-parallel hyperellipsoidif values are only encoded on the diagonal of the

transformation matrix. As before, a classifier matches a given input if its current activity lies above threshold

θm.

In covering, the center of the hyperellipsoid is set to the current value. Only the diagonal entries in the matrix

are initialized to the squared inverse of the uniformly randomly chosen number between zero andr0. The inverse

is chosen to mimic the initial size of the axis-parallel hyperellipsoids. All other matrix entries are set to zero.

Mutation is similarly adjusted in that each matrix entry is mutated separately, maximally decreasing (increasing)

the value by50%. If the value is still zero, it is initialized to a randomly chosen value as in covering for the diagonal

matrix entries considering parameterµ0. The values of the matrix entries are unrestricted. Uniformcrossover is

applied to alln + n2 condition part values.

To decide if a classifier is contained by another classifier during subsumption, we use an approximation. A

classifier is considered more general than a second classifier if its condition part contains the point on the outside

surface of the other ellipsoid that lies beyond the midpointof the other classifier. Figure 4 illustrates several cases.

Performance of XCSF with general hyperellipsoidal conditions in functionsf1, f2, f3 is shown in Figure 5.

Function approximation is improved in the cases of functions f2 and f3 since it is possible to rotate the general

10

Fig. 4. During subsumption, an ellipsoid A is considered more general than ellipsoid B, if A contains the point at which the elongation from

the center of A through the center of B intersects the surfaceof B. Elongations are indicated by dotted lines. Ellipsoidsthat can be subsumed

by the big white ellipsoid are in light Grey, others in dark Grey.

hyperellipsoid in the input space. Thus, there are less disruptive overlaps and the classifier orientation can suitably

rotate to enable even more accurate approximations. However, learning still takes a considerable amount of time.

The next sections show the effects of further improved condition approximation and parameter estimation.

C. Explicit Representation of Ellipsoidal Orientation

So far, hyperellipsoids are represented by a transformation matrixΣ, which implicitly encodes stretch and angular

orientation of the represented hyperellipsoid. This leadsto a redundant encoding of the actual hyperellipsoidal

structure. Such redundant encodings have been shown to be beneficial sometimes [38], since the encoding can

open up additional paths through the problem space the evolutionary process can exploit. However, as shown in

Figure 5, the evolutionary process is still rather slow. Theredundant encoding seems to slow down evolutionary

progress since (1) mutations of entries in the transformation matrix may cause strong and often misleading changes

in the hyperellipsoidal structure, (2) crossover may be disruptive possibly generating two unsuitable ellipsoidal

structures out of two currently useful ones, and (3) unnecessary diversity can hinder effective evolutionary progress

since reproductive opportunities of successful classifierstructures may decrease [4]. Thus, we now enable the

more explicit evolution of stretch and angular orientationof the hyperellipsoidal structure in order to speed up the

evolutionary progress.

In the case of the axis-parallel representation, we alreadyhad an explicit stretch representation of the ellipsoid

in each dimension. Thus, as in the previous case, we now againrepresent stretch with vector~σ = (σ1, ..., σn)T . To

represent rotations properly, we need to represent
(

n
2

)

angles to define unique angular rotations with respect to each

axis. Thus, we replace the previous covariance matrix representation of the condition with the stretch vector~σ and a

11

vector of transformation angles~γ of size
(

n
2

)

. The necessary rotation matrices and consequent transformation matrix

is then derivable from the angular vector. In 2-D and 3-D, therotation matrix can be derived directly from the Euler

angles [39]. In higher dimensions the rotation matrix can bedetermined by multiplying together the
(

n
2

)

rotations

with respect to each of the hyperplanes. We consequently enable XCSF to explicitly evolve the hyperellipsoidal

representation instead of evolving the orientations indirectly within the transformation matrix representation.

The angles are initialized to zero upon covering, essentially starting the learning progress with axis-parallel

hyperellipsoidal structures. Mutation alters the angles by a uniform random number from[−πµ0, πµ0]. The angles

are constrained to lie in(−2π, 2π]. The representation still allows redundant encodings: Forexample, in two

dimensions an ellipse with stretchm1 = 2 and m2 = .1 and angle0 (or 2π) is equivalent to another ellipse

with stretchm1 = .1 andm2 = 2 and angleπ/2 (or −3π/2). Crossover applies to each angular value separately

applying uniform crossover.

Figure 6 shows the performance of XCS with rotating hyperellipsoids in the three test functions. Performance

improvements occur in the diagonal sinusoidal functionf2 and are even more pronounced inf3, compared to the

runs without explicit rotation (cf. Figure 5). In the axis-parallel sinusoidal function, performance is not affected

since rotations are unnecessary in this case. Nonetheless,dependent on the learning rateβ applied, accuracy remains

rather noisy indicating that the prediction value approximations could be further improved. Thus, we now add the

recently introduced RLS approximation technique to XCS parameter estimation.

D. More Accurate Approximations using RLS

Recently, the delta rule update of the prediction part (Equation 1) was replaced by the pseudoinverse method [13]

and RLS [40]. RLS is known to yield fast and stable parameter approximations due to the utilization of second-order

gradient information [41]. The resulting approximations were shown to yield more suitable linear approximations

in XCSF [13] while decreasing the parameter estimation variance [21].

To implement (linear) RLS in XCSF classifiers, a matrixV (of size (n + 1) × (n + 1)) needs to be added to

each classifier. The update of XCSF with RLS is done as follows. Given the current input~x and the target value

y, RLS updates the weight vector~w by

~w ← ~w + ~k[(yt − (~x∗ − ~m∗))T ~w],

where,~k is thegain vectorcomputed as

~k =
V T (~x∗ − ~m∗)

λ + (~x∗ − ~m∗)T V T (~x∗ − ~m∗)
, (9)

while matrix V is updated recursively by,

V T = λ−1
[

I − ~k(~x∗ − ~m∗)T
]

V T . (10)

Parameterλ denotes the forget rate for RLS, whereλ = 1 denotes infinite memory. A value less than one leads

to “forgetting” of values in the (distant) past consequently enabling continuous adaptivity but also potentially

12

 0.001

 0.01

 0.1

 1

 0 50 100 150 200 250 300 350 400

pr
ed

. e
rr

or
, m

ac
ro

 c
l.

(/
25

.6
k)

number of learning steps (1000s)

XCSF, HyperEllipsoid in f1: sin(2 π x)+sin(2 π y)

β=.5: pred.error
macro cl.

β=.1: pred.error
macro cl.

 0.001

 0.01

 0.1

 1

 0 50 100 150 200 250 300 350 400

pr
ed

. e
rr

or
, m

ac
ro

 c
l.

(/
25

.6
k)

number of learning steps (1000s)

XCSF, HyperEllipsoid in f2: sin(2 π (x+y))

β=.5: pred.error
macro cl.

β=.1: pred.error
macro cl.

 0.001

 0.01

 0.1

 1

 0 50 100 150 200 250 300 350 400

pr
ed

. e
rr

or
, m

ac
ro

 c
l.

(/
25

.6
k)

number of learning steps (1000s)

XCSF, HyperEllipsoid in f3: sin(4 π (x+y))

β=.5: pred.error
macro cl.

β=.1: pred.error
macro cl.

Fig. 5. General hyperellipsoidal conditions further improve per-

formance compared to (restricted) hyperellipsoidal conditions. Also

the number of distinct classifiers slightly decreases. Although all

runs reached an accuracy level below.01 after 400k learning steps,

learning progress still seems rather slow.

 0.001

 0.01

 0.1

 1

 0 50 100 150 200 250 300 350 400

pr
ed

. e
rr

or
, m

ac
ro

 c
l.

(/
25

.6
k)

number of learning steps (1000s)

XCSF, Rot. HyperEllipsoid in f1: sin(2 π x)+sin(2 π y)

β=.5: pred.error
macro cl.

β=.1: pred.error
macro cl.

 0.001

 0.01

 0.1

 1

 0 50 100 150 200 250 300 350 400

pr
ed

. e
rr

or
, m

ac
ro

 c
l.

(/
25

.6
k)

number of learning steps (1000s)

XCSF, Rot. HyperEllipsoid in f2: sin(2 π (x+y))

β=.5: pred.error
macro cl.

β=.1: pred.error
macro cl.

 0.001

 0.01

 0.1

 1

 0 50 100 150 200 250 300 350 400

pr
ed

. e
rr

or
, m

ac
ro

 c
l.

(/
25

.6
k)

number of learning steps (1000s)

XCSF, Rot. HyperEllipsoid in f3: sin(4 π (x+y))

β=.5: pred.error
macro cl.

β=.1: pred.error
macro cl.

Fig. 6. Quickening the evolutionary process by enabling explicit

ellipsoidal rotations speeds up learning progress and finalaccuracy

in functions f2 and f3. Performance is still rather noisy, though.

Population size does not appear to change compared to runs without

explicit rotation.

13

introducing unintended instabilities [41]. MatrixV (avoiding the often used inverse computation) can be initialized

by the scaled identity matrix, as suggested elsewhere [21],[41]:

V = δrlsI, (11)

whereI is the identity matrix of dimensionn + 1 andδrls > 0, where largerδrls values introduce less bias to the

initial weight vector~w (if not stated differently,λ = 1, δrls = 1000 in the experiments reported below). Note that

RLS is a special case of Kalman filtering for the case of a fixed target state in which no control signal is applied

to the state variables (that is, the weight vector~w).

Figure 7 shows the resulting performance on the three test functions. Performance accuracy generally improves

in all three functions compared to runs without RLS (cf. Figure 5). This indicates that more accurate predictions are

formed independent of the orientation of the function. Alsolearning speed increases suggesting that RLS is able to

deliver suitable prediction estimates faster than the direct gradient-based update mechanism. Figure 7 also compares

different initialization values of matrixV during classifier generation (during covering or GA) and different δrls

values. It can be seen that a forget rate ofλ = .99 is advantageous if the matrix diagonal is initialized withδrls = 1.

The smallδrls biases the weight updates towards the initial weight setting. This can be alleviated by the forget

rate. However, it can also be prevented by initializing the matrix diagonal with larger valuesδrls = 1000. In this

case, the forget rateλ has no additional positive influence but actually can cause temporary instabilities (Figure 7

right bottom graph). Nonetheless, in dynamic problems in which the function or concept values change over time,

a forget rateλ below 1 might still be advantageous.

IV. RULE-SET COMPACTION

Despite the accurate and reliable performance of XCSF with RLS approximation and rotating hyperellipsoidal

representations, the final population sizes of XCSF suggestthat the function is overrepresented with highly

overlapping classifiers. Thus, we now introduce a new compaction mechanism to XCSF. The mechanism can

compact the population of XCSF by over90% while influencing accuracy of performance only marginally.

A challenge for any form of compaction is that the resulting population may not cover the complete problem

space any longer. The determination of uncovered subspaces, however, is a computationally intensive problem.

Our compaction mechanism avoids this problem by switching on compaction onset to aclosest classifier matching

(CCM) mechanism, in which a fixed number of closest classifiers match. During compaction, the GA does not

apply mutation or crossover any longer, as suggested in Wilson’s original condensation approach [1]. Additionally,

a greedy algorithm may be applied on compaction onset, whichdeletes redundant, inaccurate, overlapping classifiers.

A. Closest Classifier Matching

Most classifier systems to date have experimented only with LCS populations in which each classifier matches

in a restricted subspace of the search space that is determined in the classifier condition. Booker [42] defined a

14

 0.001

 0.01

 0.1

 1

 0 50 100 150 200 250 300 350 400

pr
ed

. e
rr

or
, m

ac
ro

 c
l.

(/
25

.6
k)

number of learning steps (1000s)

XCSF, Rot. HyperEllipsoid with RLS, δrls=1 in f1: sin(2 π x)+sin(2 π y)

λ=1: pred.error
macro cl.

λ=.99: pred.error
macro cl.

 0.001

 0.01

 0.1

 1

 0 50 100 150 200 250 300 350 400

pr
ed

. e
rr

or
, m

ac
ro

 c
l.

(/
25

.6
k)

number of learning steps (1000s)

XCSF, Rot. HyperEllipsoid with RLS, δrls=1000 in f1: sin(2 π x)+sin(2 π y)

λ=1: pred.error
macro cl.

λ=.99: pred.error
macro cl.

 0.001

 0.01

 0.1

 1

 0 50 100 150 200 250 300 350 400

pr
ed

. e
rr

or
, m

ac
ro

 c
l.

(/
25

.6
k)

number of learning steps (1000s)

XCSF, Rot. HyperEllipsoid with RLS, δrls=1 in f2: sin(2 π (x+y))

λ=1: pred.error
macro cl.

λ=.99: pred.error
macro cl.

 0.001

 0.01

 0.1

 1

 0 50 100 150 200 250 300 350 400

pr
ed

. e
rr

or
, m

ac
ro

 c
l.

(/
25

.6
k)

number of learning steps (1000s)

XCSF, Rot. HyperEllipsoid with RLS, δrls=1000 in f2: sin(2 π (x+y))

λ=1: pred.error
macro cl.

λ=.99: pred.error
macro cl.

 0.001

 0.01

 0.1

 1

 0 50 100 150 200 250 300 350 400

pr
ed

. e
rr

or
, m

ac
ro

 c
l.

(/
25

.6
k)

number of learning steps (1000s)

XCSF, Rot. HyperEllipsoid with RLS, δrls=1 in f3: sin(4 π (x+y))

λ=1: pred.error
macro cl.

λ=.99: pred.error
macro cl.

 0.001

 0.01

 0.1

 1

 0 50 100 150 200 250 300 350 400

pr
ed

. e
rr

or
, m

ac
ro

 c
l.

(/
25

.6
k)

number of learning steps (1000s)

XCSF, Rot. HyperEllipsoid with RLS, δrls=1000 in f3: sin(4 π (x+y))

λ=1: pred.error
macro cl.

λ=.99: pred.error
macro cl.

Fig. 7. Learning progress improves further when RLS is applied to optimize the linear prediction of classifiers in all three test functions. The

usage of a forget factorλ = .99 can abolish the bias due the chosen initial weight vector initialization (left-hand side). However, larger initial

values in the diagonal of matrixV (δrls = 1000) abolish the bias as well and enable even more accurate parameter estimations. Hereby, the

runs withλ = 1 (right-hand side) yield the most stable performance.

15

matching mechanism where a classifier matched a binary inputstring even when some bits did not actually match.

Fuzzy classifier systems have been investigated [43], whereclassifiers match to self-defined degrees. However, none

of these approaches set the classifiers in relation to each other, that is, there was no competition during matching

but matching was determined individually for each classifier independent of other classifiers in the population.

Later, Booker [44] designed a matching mechanism that contained a minimum number of matching classifiers.

If the number of matching classifiers did not reach that number, additional closest classifiers matched. Our CCM

approach takes a similar road, matching theclosestΘM (micro-) classifiers. In this way, it is guaranteed that

ΘM classifiers match the current input, so that the match set size is alsoΘM . Closest is defined in the condition

structures of a classifiers, that is, by the activity determination in each classifier, defined in equations (5) and (8)

for axis-parallel hyperellipsoids and general hyperellipsoids, respectively.

Thus, given current input vector~xt, first the activity of each classifier is determined. Next, the ΘM classifiers

with the highest activity are added to the current match set.Note that this can be done in linear time on average so

that only a constant amount of additional computation time is needed on average for this step (since determining

classifier activity also takes linear time). The consequence is a mosaic-like matching of classifiers with overlapping

tiles, which are determined by the distribution of classifiers over the problem space as well as the distance measures

of the classifiers.

B. Greedy Compaction Algorithm

Several previous compaction approaches have used heuristics to compact the population quickly and effectively.

However, all of these approaches had to take special care to prevent uncovered input regions [24], [25]. Our

algorithm can ignore this problem due to the CCM approach andcan consequently act more greedily.

The greedy algorithm works as follows:

Algorithm Compact XCSF:

1 Iteratively consider all experienced classifiers cl (exp > θsub) in [P]

prioritized on the minimum error

2 Form match sets [M] containing all classifiers that match the center of cl

3 Set numerosity of cl to |[M]| and delete all other classifiers in [M]

The motivation of this compaction algorithm is to compact the population while maintaining the general classifier

distribution over the problem space. The algorithm iteratively considers the next experienced, least error classifier

cl in the population. Next, a match set[M] is formed that contains all classifiers that match the centerof the

selected classifier, consequently considering all center-overlapping classifiers. All matching classifiers are deleted

and their numerosity is transferred to the initially selected classifiercl, since the initially selected classifier is the

experienced, least error classifier in that subspace. The algorithm assures that hard problem subspaces, those with

strong curvature in the function, remain covered by more classifiers than regions that can be approximated easily.

16

The runtime of the algorithm is quadratic in population size, since the selection of the next least error classifier in

the population and the respective match set formations taketime linear in population size. Seeing that the number

of learning iterations as well as population size grow polynomially in problem complexity [45], [9], this complexity

is not a bottleneck in the learning process, but can rather beneglected, compared to learning time.

Since the shape of the subspace a classifier matches in changes due to the application of CCM upon compaction,

XCSF continues adjusting its parameter values to account for the altered subspace that each classifier now matches

in. XCSF also continues to apply the GA to balance space coverage. However, after compaction, neither mutation

nor crossover are applied any longer, effectively applyingthe condensation mechanism of Wilson’s original work

[1], but with CCM ensuring complete problem space coverage.

In sum, rule set compaction is applied after a certain amountof learning steps. First, the compaction algorithm

may be applied. From then on, CCM is used with a match set size of ΘM (set toΘM = 20 throughout) and XCSF

condensation applies, executing the GA without mutation and crossover operations.

C. Compaction Performance

We tested the compaction mechanism on multiple real-valuedfunctions. The sizeΘM was set to twenty throughout

the experiments. In the implementation, we do not enforceΘM exactly but have enough individual classifiers match,

so that at leastΘM (micro-) classifiers match. For example, ifΘM = 20 and the closest classifier has numerosity

16, and the second closest classifier has numerosity11, both complete classifiers will participate in the match set.

We will now show performance of the compaction algorithm in the three functions considered throughout this

paper. The subsequent section further evaluates the compaction algorithm in more challenging functions as well as

in higher dimensions.

Figure 8 shows the performance of the compaction mechanism in the three test functions. After iteration400k

the compaction mechanism applies changing the matching procedure to CCM and applying condensation (no more

mutation nor crossover during the GA application). Withoutthe application of the greedy compaction algorithm

(left-hand side graphs of Figure 8), the number of distinct classifiers in the population strongly and continuously

decreases while accuracy is affected marginally. In fact, in functionf2 accuracy even increases indicating that the

compaction mechanism eliminates inaccurate classifiers allowing for an even more accurate function approximation.

Moreover, it can be seen that a forget factorλ = .99 is slightly advantageous compared to infinite memory (λ = 1)

in the classifier predictions. When changing to CCM, the subspace a classifier matches changes and becomes

dynamically dependent on the distribution of surrounding classifiers and their numerosity values. Thus, the optimal

linear approximation for the altered subspace is likely to change, dependent on the function values in the altered

subspace. Thus, an adaptation rate to this change can be advantageous. Alternatively, also the covariance matrixV

may be adjusted by increasing the diagonal entries (initialized by δrls), which is however not further investigated

in this paper.

17

 0.001

 0.01

 0.1

 350 400 450 500 550 600 650 700 750 800

pr
ed

. e
rr

or
, m

ac
ro

 c
l.

(/
25

.6
k)

number of learning steps (1000s)

XCSF, No Compaction Alg., Rot. HyperEllipsoid with RLS in f1: sin(2 π x)+sin(2 π y)

λ=1: pred.error
macro cl.

λ=.99: pred.error
macro cl.

 0.001

 0.01

 0.1

 350 400 450 500 550 600 650 700 750 800

pr
ed

. e
rr

or
, m

ac
ro

 c
l.

(/
25

.6
k)

number of learning steps (1000s)

XCSF, Rot. HyperEllipsoid with RLS in f1: sin(2 π x)+sin(2 π y)

λ=1: pred.error
macro cl.

λ=.99: pred.error
macro cl.

 0.001

 0.01

 0.1

 350 400 450 500 550 600 650 700 750 800

pr
ed

. e
rr

or
, m

ac
ro

 c
l.

(/
25

.6
k)

number of learning steps (1000s)

XCSF, No Compaction Alg., Rot. HyperEllipsoid with RLS in f2: sin(2 π (x+y))

λ=1: pred.error
macro cl.

λ=.99: pred.error
macro cl.

 0.001

 0.01

 0.1

 350 400 450 500 550 600 650 700 750 800

pr
ed

. e
rr

or
, m

ac
ro

 c
l.

(/
25

.6
k)

number of learning steps (1000s)

XCSF, Rot. HyperEllipsoid with RLS in f2: sin(2 π (x+y))

λ=1: pred.error
macro cl.

λ=.99: pred.error
macro cl.

 0.001

 0.01

 0.1

 350 400 450 500 550 600 650 700 750 800

pr
ed

. e
rr

or
, m

ac
ro

 c
l.

(/
25

.6
k)

number of learning steps (1000s)

XCSF, No Compaction Alg., Rot. HyperEllipsoid with RLS in f3: sin(4 π (x+y))

λ=1: pred.error
macro cl.

λ=.99: pred.error
macro cl.

 0.001

 0.01

 0.1

 350 400 450 500 550 600 650 700 750 800

pr
ed

. e
rr

or
, m

ac
ro

 c
l.

(/
25

.6
k)

number of learning steps (1000s)

XCSF, Rot. HyperEllipsoid with RLS in f3: sin(4 π (x+y))

λ=1: pred.error
macro cl.

λ=.99: pred.error
macro cl.

Fig. 8. The compaction mechanism with closest classifier matching and condensation decreases the number of macro classifiers while marginally

affecting accuracy (left-hand side). Hereby, the forget factor λ = .99 shows to respond to the changing approximation subspace dueto closest

classifier matching faster than without forgetting, especially in functionsf2 andf3. The application of the greedy algorithm upon the application

of compaction decreases the number of macro classifiers evenmore strongly, still hardly affecting accuracy (right-hand side).

18

With the application of the greedy compaction algorithm, the number of distinct classifiers shrinks even more

strongly (right-hand side graphs of Figure 8). Accuracy slightly drops since the matching algorithm and classifier

distribution is changed, which is slightly compensated dueto function value estimation adjustments. With the

greedy compaction algorithm, the forget factorλ of the RLS algorithm does not show any additional influence

on performance accuracy in the three functions. While the error values were.0039 ± .0002, .0018 ± .0003, and

.0026 ± .0004 for the three functions, respectively, before compaction was applied (settingλ = 1), they were at

.0056± .0002, .0022± .0004, and.0030± .0006, after200k further iterations. Thus, accuracy was slightly affected.

On the other hand, population sizes decreased highly significantly: Before compaction, the sizes of distinct (macro-)

classifiers were2344± 52, 2011± 80, and2106± 46, respectively, and settled at251± 7, 71± 10, and101± 11

after compaction—a drop of more than90% on average. It is also apparent that the higher regularity infunctions

f2 andf3 is detected appropriately, resulting in more compact function representations than in the case off1, in

which less regularity can be exploited. The results confirm the robustness of the greedy compaction algorithm as

well as the CCM mechanism maintaining accurate approximations while strongly decreasing population sizes.

V. PERFORMANCEEVALUATIONS

We now evaluate XCSF’s performance on higher dimensional function problems as well as in other function

domains. In each case, we analyze achieved accuracy and finalpopulation compaction. Finally, we compare XCSF’s

performance with statistics-based approximation approaches [28], [29], compared to which XCSF shows competitive

performance, as well as with the self-organizing neural network approach Neural GAS [26], [27], which XCSF

outperforms easily. We also evaluate XCSF’s generalization capabilities by restricting the input space to a subset

of sampled function values.

A. Performance on 3D Functions

Before moving on to other functions, we test XCSF onf1, f2, andf3 in the three dimensional setting. Performance

is shown in Figure 9.

In the case off1, the function becomes significantly more difficult. As predicted, the checkerboard quality of

f1 discussed above enforces a grid-like partitioning of the search space for maximally suitable approximations.

In conjunction with the piecewise linear approximation in each classifier, the function consequently becomes

exponentially more difficult with each additional dimension. Thus, regardless with which setting, XCSF does not

reach an accuracy of.01 anymore and no convergence is observable in the population.

Compaction affects performance slightly if no proper convergence was reached in all three functions. Especially

when no explicit rotations are enabled but the full transformation matrix is evolved (left-hand side graphs of

Figure 9), accuracy drops upon the application of the compaction mechanism. However, with RLS and rotating

hyperellipsoids this effect is marginalized. In functionf3, for example, compaction decreases population size from

19

 0.01

 0.1

 1

 0 100 200 300 400 500

pr
ed

. e
rr

or
, m

ac
ro

 c
l.

(/
25

.6
k)

number of learning steps (1000s)

XCSF, HyperEllipsoid in f1(x,y,z): sin(2 π x)+sin(2 π y)+sin(2 π z)

No RLS: pred.error
macro cl.

With RLS: pred.error
macro cl.

 0.01

 0.1

 1

 0 100 200 300 400 500

pr
ed

. e
rr

or
, m

ac
ro

 c
l.

(/
25

.6
k)

number of learning steps (1000s)

XCSF, Rot. HyperEllipsoid in f1(x,y,z): sin(2 π x)+sin(2 π y)+sin(2 π z)

No RLS: pred.error
macro cl.

With RLS: pred.error
macro cl.

 0.001

 0.01

 0.1

 1

 0 100 200 300 400 500

pr
ed

. e
rr

or
, m

ac
ro

 c
l.

(/
25

.6
k)

number of learning steps (1000s)

XCSF, HyperEllipsoid in f2(x,y,z): sin(2 π (x+y+z))

No RLS: pred.error
macro cl.

With RLS: pred.error
macro cl.

 0.001

 0.01

 0.1

 1

 0 100 200 300 400 500

pr
ed

. e
rr

or
, m

ac
ro

 c
l.

(/
25

.6
k)

number of learning steps (1000s)

XCSF, Rot. HyperEllipsoid in f2(x,y,z): sin(2 π (x+y+z))

No RLS: pred.error
macro cl.

With RLS: pred.error
macro cl.

 0.001

 0.01

 0.1

 1

 0 100 200 300 400 500

pr
ed

. e
rr

or
, m

ac
ro

 c
l.

(/
25

.6
k)

number of learning steps (1000s)

XCSF, HyperEllipsoid in f3(x,y,z): sin(4 π (x+y+z))

No RLS: pred.error
macro cl.

With RLS: pred.error
macro cl.

 0.001

 0.01

 0.1

 1

 0 100 200 300 400 500

pr
ed

. e
rr

or
, m

ac
ro

 c
l.

(/
25

.6
k)

number of learning steps (1000s)

XCSF, Rot. HyperEllipsoid in f3(x,y,z): sin(4 π (x+y+z))

No RLS: pred.error
macro cl.

With RLS: pred.error
macro cl.

Fig. 9. The checkerboard quality off1 prevents XCSF from reaching a.01 error level in three dimensions. In functionsf2 andf3, though,

XCSF continues to learn accurately. As observed in the two dimensional case, RLS yields accuracy improvements in all three functions. The

explicit rotation of hyperellipsoids (instead of evaluating the full covariance matrix) is advantageous in functionsin which rotations are necessary

(f2 andf3). Compaction strongly decreases population size while performance is only slightly affected, especially when the function was learned

effectively.

20

2357±70 to 131±12 (measuring at learning step390k and500k), affecting accuracy hardly at all (.00392± .00060

vs. .00396± .00053). This confirms that the evolutionary process of XCSF is ableto identify the oblique function

property and orient the evolving hyperellipsoids accordingly.

To further investigate the power of the approach, we tested XCSF with rotating hyperellipsoids in several other

three dimensional functions:

f4(x, y, z) = sin(8π(x + y + z)),

f5(x, y, z) = sin(2π(x + y + z)) + sin(4π(x + y + z)) + sin(6π(x + y + z)) + sin(8π(x + y + z)),

f6(x, y, z) = | sin(2π(x + y + z))|+ | cos(2π(x + y + z))|,

f7(x, y, z) = sin(2π(x + y + sin(πz)))

The first two functions make approximation even more difficult than inf3 due to stronger curvature. Functionsf6

andf7 are non-continuously differentiable and continuously changing in their obliqueness, respectively.

Performance on these four functions is shown in Figure 10. XCSF shows the typical learning pattern inf4,

which is more difficult thanf3, but generally of the same structural requirements (classifiers should be distributed

approximately double as dense for equal accuracy). Performance improvement is more noisy and takes longer

on average compared to performance onf3. After compaction, performance onf3 maintains an error level of

.0040±.0005 with only 131±12 macro classifiers. On the other hand, inf4, performance levels out at.0054±.0008

with a macro classifier size of256± 29, which clearly indicates the doubled complexity in the function.

Functionf5 is a superimposed sine function. Performance on this function is similar tof4. Although the function

has higher values in its second derivative, it allows initial faster learning due to the lower absolute value differences.

Upon convergence, though, the error stays higher than in thef4 runs (.0065 ± .0013 with size 242 ± 22). In the

non-differentiable casef6, XCSF is still able to generalize maintaining high accuracy(.0041 ± .0006 with size

162 ± 39). In f7, the function does not lie perfectly obliquely in the problem space any-longer but obliqueness

changes gradually. Consequently, the hyperellipsoidal orientations need to be locally optimized and the overlaps

are not as clear-cut as before. Nonetheless, performance still reaches the.01 level with an error of.0071± .0016

and a number of macro classifiers of5100± 119 before compaction, and error.0085± .0011 and number407± 20

afterward. Compaction increases the approximation error most in functionf6, which appears to be due to the non-

differentiability of the function at several locations. The compaction algorithm overgeneralizes at these points over-

or under-estimating the slope of the function.

B. Higher Dimensions

After the evaluation of the general capabilities of XCSF with compaction, we now test the scalability of XCSF

and the associated rotation mutation in higher dimensions.

21

 0.001

 0.01

 0.1

 1

 0 100 200 300 400 500 600

pr
ed

. e
rr

or
, m

ac
ro

 c
l (

/5
1.

2)

number of learning steps (1000s)

XCSF, Rot. HyperEllipsoid with RLS, N=12.8k in
 f4: sin(8π (x+y+z))

C02: pred.error
macro cl.

 0.001

 0.01

 0.1

 1

 0 100 200 300 400 500 600

pr
ed

. e
rr

or
, m

ac
ro

 c
l (

/5
1.

2k
)

number of learning steps (1000s)

XCSF, Rot. HyperEllipsoid with RLS, N=12.8k in
 f5: sin(2 π (x+y+z))+sin(4 π (x+y+z))+sin(6 π (x+y+z))+sin(8 π (x+y+z))

pred.error
macro cl.

 0.001

 0.01

 0.1

 1

 0 100 200 300 400 500 600

pr
ed

. e
rr

or
, m

ac
ro

 c
l (

/5
1.

2k
)

number of learning steps (1000s)

XCSF, Rot. HyperEllipsoid with RLS, N=12.8k in
 f6: |sin(2 π (x+y+z))| + |cos(2 π (x+y+z))|

pred.error
macro cl.

 0.001

 0.01

 0.1

 1

 0 100 200 300 400 500 600

pr
ed

. e
rr

or
, m

ac
ro

 c
l (

/5
1.

2k
)

number of learning steps (1000s)

XCSF, Rot. HyperEllipsoid with RLS, N=12.8k in
 f7: sin(2 π (x+y+ sin(π z))

pred.error
macro cl.

Fig. 10. Performance on other three dimensional functions confirms the robustness of XCSF learning and compaction mechanisms.

To evaluate the suitability of explicit rotations via mutation, we tested XCSF onf2 andf3 in four dimensions.

Figure 11 shows that XCSF without explicitly rotating hyperellipsoids does not reach the accuracy level that XCSF

with rotation reaches. Also the number of distinct macro classifiers in the population stays much higher, indicating a

lower amount of convergence and higher diversity in the population. After compaction, the difference becomes even

more pronounced: In functionf3, XCSF with rotation hardly looses accuracy (.0046±.0015 before vs..0051±.0010

after compaction) while eliminating more than90% of its classifiers (2504 ± 83 vs. 164 ± 13). Without rotation,

XCSF exhibits higher variance and a loss of accuracy after compaction (.0272 ± .0169 vs. .0515 ± .0207). This

confirms that the more direct mutation via rotations facilitates population convergence and the development of more

suitable classifier hyperellipsoid orientations.

With a successful approximation of a four dimensional function in hand, we experimented with the scalability

of our approach. Increasing the dimensions makes the problem progressively harder for XCSF. First, to cover the

22

 0.001

 0.01

 0.1

 1

 0 100 200 300 400 500

pr
ed

. e
rr

or
, m

ac
ro

 c
l.

(/
25

.6
)

number of learning steps (1000s)

XCSF, HyperEllipsoid with RLS in f2(x1,...,x4): sin(2 π (x1+...+x4))

No Rot.: pred.error
macro cl.

With Rot.: pred.error
macro cl.

 0.001

 0.01

 0.1

 1

 0 100 200 300 400 500

pr
ed

. e
rr

or
, m

ac
ro

 c
l.

(/
25

.6
)

number of learning steps (1000s)

XCSF, HyperEllipsoid with RLS in f3(x1,...,x4): sin(4 π (x1+...+x4))

No Rot.: pred.error
macro cl.

With Rot.: pred.error
macro cl.

Fig. 11. Also in four dimensions, explicit rotation of hyperellipsoids via mutation facilitates learning in functionsf2 andf3. If the hyperellipsoids

are located suitably, compaction does not disrupt but generates an accurate, highly compact final solution.

whole problem space, the number of necessary classifiers increases exponentially with the dimensions given the

average size covered in each dimension in a classifier remains constant. If the coverage of the initial classifiers

(generated by covering) is increased, though, then important problem structures may not be detected due to the lack

of fitness pressure [5], [9], [37]. Thus, in order to be able tosolve problems in increasingly higher dimensional

spaces, a good balance between full problem space coverage and classifier specificity needs to be found.

Figure 12 shows performance curves in five, six, and seven dimension versions of functionf3. Population sizes

were set to12.8k, 25.6k, and51.2k, respectively. To decrease the variability of the classifiers in the initial population,

in the six (seven) dimensional runs during covering classifier intervals were initialized with a minimum value of

.4 (.5), that is,σii = 6.25 = .4−2 (σii = 4 = .5−2), and a maximum value of.5 (.6), respectively. The necessary

increase in maximum population size for the higher dimensions indicates the difficulty of the algorithm to detect

interesting structures in the function while maintaining full problem space coverage. In the seven dimensional case,

a classifier with an initial average spread of10% in each dimension only covers.17 of the area, suggesting the

need for107 classifiers of that size to cover the whole problem space uniformly. XCSF manages to receive a signal

with a much smaller population size and consequently largerclassifiers.

To ensure the coverage of a subspace with99% probability (see thecovering bound[5]), given a population

size of 51.2k, each classifier should cover at least a subspace of size1 − (1 − .99)1/51,200 = 8.99 ∗ 10−5. In

seven dimensions this corresponds to a square of.264 units in each dimension. The chosen maximum stretch of

σii = .6−2 = 2.78 corresponds to a distance of
√

−2 ln θm/l/σii =
√

−2 ln .7/7/2.78 = .1149 in each dimension.

Thus, the initialization slightly overspecializes. The specialized initialization enables the detection of the oblique

orientation of the approximated function, though. The highvariance in these higher dimensional cases shows the

difficulty (cf. Figure 12): the detection and growth of the relevant problem structure starts to be extended in time

23

 0.001

 0.01

 0.1

 1

 0 100 200 300 400 500 600

pr
ed

. e
rr

or
, m

ac
ro

 c
l.

(/
51

.2
k)

number of learning steps (1000s)

XCSF, Rot. HyperEllipsoid with RLS in sin(4 π (x1+...+x5))

pred.error
macro cl.

 0.001

 0.01

 0.1

 1

 0 200 400 600 800 1000 1200

pr
ed

. e
rr

or
, m

ac
ro

 c
l.

(/
10

2.
4k

)

number of learning steps (1000s)

XCSF, Rot. HyperEllipsoid with RLS in sin(4 π (x1+...+x6)), MinS=.4, r0=.1

pred.error
macro cl.

 0.001

 0.01

 0.1

 1

 0 500 1000 1500 2000

pr
ed

. e
rr

or
, m

ac
ro

 c
l.

(/
20

4.
8k

)

number of learning steps (1000s)

XCSF, Rot. HyperEllipsoid with RLS in sin(4 π (x1+...+x7)), MinS=.5, r0=.1

pred.error
macro cl.

Fig. 12. XCSF can solve functionf3 in up to seven dimensions. Covering and reproductive opportunity challenges become increasingly

pronounced due to the curse of dimensionality. Nonetheless, XCSF with compaction still generates a highly compact function approximation

representation.

(indicated by the step-like convergence averaged over twenty problems): Each experiment begins to converge at a

different point in time, resulting in the high variance during convergence. Nonetheless, XCSF is able to approximate

even the seven dimensional version of the oblique functionf3 highly accurately, reaching an accuracy level of

.0051± .00204 with only 312±42 distinct classifiers after compaction (.0053± .0020 with 10898±1414 classifiers

before compaction).

C. Generalization Capabilities

Besides larger dimensions and other functions, it is interesting to evaluate the generalization capabilities of XCSF

with and without compaction. Thus, we tested XCSF in functionsf1, f2, andf3 on a restricted training set of500

uniformly randomly selected data points of the functions. The training set is continuously sampled in epochs of

500 learning iterations without replacement, as has been done elsewhere [28]. Performance, however, is tested on

24

a 41× 41 grid distributed uniformly over the function domain. To allow comparisons with results of other systems

available in the literature [28], performance now is measured by the normalized mean square error (nMSE), that is,

the MSE divided by the sample variance of the1, 681 test function values. Since restricted sampling emphasizes

the importance of generalization, the fitness pressure was decreased by setting the tournament size proportion to

τ = .1.

Figure 13 shows that XCSF can accurately approximate the three functions with an nMSE of.0009 ± .0004,

.00015 ± .00013, and .0027 ± .0034, respectively, before compaction. This confirms the accurate generalization

capabilities of XCSF. It can be seen that the application of aforget rate ofλ = .99 does not improve accuracy

but rather causes performance instabilities. These instabilities also apply during compaction. Compaction in general

causes a slight accuracy decrease in this case, most likely due to under-sampled problem areas. After 100k iterations

with CCM and condensation performance nMSE withλ = 1 and application of the greedy compaction algorithm

(performance without compaction algorithm in brackets) was .0024± .0022 (.0015± .0028), .0012± .0024 (.0003±
.0009), and .0113± .0126 (.0024± .0025) in the three functions, respectively. Nonetheless, population size again

dropped in the runs withλ = 1 and greedy compaction algorithm (without compaction algorithm): from 1599± 68

to 135±5 (1586±76 to 323±8), from 1524±75 to 68±9 (1576±75 to 286±9), and from1401±82 to 86±11

(1418± 76 to 301± 10) macro classifiers in the three functions, respectively. Thus, without the greedy compaction

algorithm, performance accuracy is only slightly affectedwhile population size decreases by approximately80%.

With the compaction algorithm, performance degrades stronger but population size is decreased by over90%.

D. Comparison with Other Approaches

As a final evaluation criterion, we chose to compare the performance of XCSF with several other non-evolutionary

learning approaches.

1) Constructive Incremental Learning Approach:The constructive incremental learning approach learns a solution

similar to the one evolved by XCSF using heuristics-based statistics [28]. The resulting greedy learning algorithm

was tested on the following function:

f8(x, y) = max
{

e−10x2

, e−50y2

, 1.25e−5(x2+y2)
}

+ N(0, .01), (12)

where the last term denotes Gaussian noise with a standard deviation of .01. [28] reports performance values in

the setting with a restricted training set of500 points, drawn uniformly randomly from[−1, 1] in both dimensions

and sampled without replacement over many epochs. Performance is tested in a41× 41 grid, which is distributed

uniformly over the function domain. A normalized mean squared error of .02 is reported. Besides the required

approximation due to the restricted training set, the noisecoefficient in the function requires sufficient noise tolerance

of the algorithm.

We tested XCSF performance on functionf8 with unrestricted problem sampling and with a restricted set of 500

points, as in [28]. Again, the tournament size proportion was set toτ = .1 in the restricted set runs. Performance

25

 0.001

 0.01

 0.1

 1

 0 100 200 300 400 500

nM
S

E
, m

ac
ro

 c
l.

(/
25

.6
k)

number of learning steps (1000s)

XCSF, Rot. HyperEllipsoid with RLS, τ=.1, λ=.99, TrainSet=500, in f1: sin(2 π x)+sin(2 π y)

No Compaction Alg.: nMSE
macro cl.

With Compaction Alg.: nMSE
macro cl.

 0.001

 0.01

 0.1

 1

 0 100 200 300 400 500

nM
S

E
, m

ac
ro

 c
l.

(/
25

.6
k)

number of learning steps (1000s)

XCSF, Rot. HyperEllipsoid with RLS, τ=.1, TrainSet=500, in f1: sin(2 π x)+sin(2 π y)

No Compaction Alg.: nMSE
macro cl.

With Compaction Alg.: nMSE
macro cl.

 0.0001

 0.001

 0.01

 0.1

 1

 0 100 200 300 400 500

nM
S

E
, m

ac
ro

 c
l.

(/
25

.6
k)

number of learning steps (1000s)

XCSF, Rot. HyperEllipsoid with RLS, τ=.1, λ=.99, TrainSet=500 in f2: sin(2 π (x+y))

No Compaction Alg.: nMSE
macro cl.

With Compaction Alg.: nMSE
macro cl.

 0.0001

 0.001

 0.01

 0.1

 1

 0 100 200 300 400 500

nM
S

E
, m

ac
ro

 c
l.

(/
25

.6
k)

number of learning steps (1000s)

XCSF, Rot. HyperEllipsoid with RLS, τ=.1, TrainSet=500 in f2: sin(2 π (x+y))

No Compaction Alg.: nMSE
macro cl.

With Compaction Alg.: nMSE
macro cl.

 0.001

 0.01

 0.1

 1

 0 100 200 300 400 500

nM
S

E
, m

ac
ro

 c
l.

(/
25

.6
k)

number of learning steps (1000s)

XCSF, Rot. HyperEllipsoid with RLS, τ=.1, λ=.99, TrainSet=500 in f3: sin(4 π (x+y))

No Compaction Alg.: nMSE
macro cl.

With Compaction Alg.: nMSE
macro cl.

 0.001

 0.01

 0.1

 1

 0 100 200 300 400 500

nM
S

E
, m

ac
ro

 c
l.

(/
25

.6
k)

number of learning steps (1000s)

XCSF, Rot. HyperEllipsoid with RLS, τ=.1, TrainSet=500 in f3: sin(4 π (x+y))

No Compaction Alg.: nMSE
macro cl.

With Compaction Alg.: nMSE
macro cl.

Fig. 13. Performance onf1, f2, andf3 tested on restricted training sets of 500 uniformly randomly sampled points confirms the generalization

capabilities of XCSF. A forget rate ofλ = .99 is not beneficial for prediction accuracy stability (left-hand side) but can even result in performance

degradation during compaction. Performance is more stablewith an infinite memory setting (λ = 1, right-hand side), also during compaction.

The application of the greedy compaction algorithm additional to CCM and condensation yields a more compact classifier set but also some

additional loss in performance accuracy.

26

 0.0001

 0.001

 0.01

 0.1

 1

 0 100 200 300 400 500

nM
S

E
, m

ac
ro

 c
l.

(/
25

.6
k)

number of learning steps (1000s)

XCSF, Rot. HyperEllipsoid with RLS, No Compaction Alg. in f8

TrainSet=500, τ=.1: nMSE
macro cl.

TrainSet=All, τ=.4: nMSE
macro cl.

 0.0001

 0.001

 0.01

 0.1

 1

 0 100 200 300 400 500

nM
S

E
, m

ac
ro

 c
l.

(/
25

.6
k)

number of learning steps (1000s)

XCSF, Rot. HyperEllipsoid with RLS in f8

TrainSet=500, τ=.1: nMSE
macro cl.

TrainSet=All, τ=.4: nMSE
macro cl.

Fig. 14. The Schaal-Atkeson function is an interesting challenge for XCSF. When the whole problem space is sampled uniformly randomly,

XCSF strongly outperforms the reported performance in [28]. The compaction algorithm appears to delete some partiallyuseful classifiers,

seeing that accuracy slightly decreases (right-hand side).

is reported in Figure 14, plotting the nMSE as done in [28]. When the whole problem space is sampled uniformly

during learning, high accuracy is reached with an nMSE of6.32 ∗ 10−5± .70 ∗ 10−5, slightly degrading to25.96 ∗
10−5±1.40∗10−5 (52.63∗10−5±96.84∗10−5) after the application of the compaction mechanism without(with)

greedy compaction algorithm. This indicates that compaction causes slightly unsuitable generalization patterns on

the approximation surface. The results, nonetheless, confirm that XCSF is able to reliably approximate the function

despite the additional noise.

XCSF reaches a performance level of.0098 ± .0104 (1448 ± 79 macro classifiers) before and.0160 ± .0108

(310± 7) after 100k iterations with compaction mechanism but without greedy algorithm, when the set of sampled

points is restricted to500 continuously sampled data points (Figure 14 left-hand side, TrainSet=500). When the

compaction algorithm was applied as well, accuracy of performance changed from.0100± .0084 (1463± 74) to

.0384± .0419 (105± 7) (Figure 14 right-hand side, TrainSet=500). Due to slightly unsuitable generalizations, the

additional decrease in the number of distinct classifiers led to a more severe error increase. Thus, in restrictedly

sampled domains, the compaction algorithm can cause unsuitable generalizations. Nonetheless, using only CCM

plus condensation, performance can be nearly maintained, while decreasing the number of distinct classifiers still

by approximately80%.

2) Incremental Linear Model Tree Algorithm:Functionf8 was also used in [29] with stronger Gaussian noise

N(0, .1) sampling from the complete problem space uniformly randomly, reporting normalized root mean square

errors (nRMSE). Performance of XCSF is shown in Figure 15. When sampling the full problem, performance reaches

a level of .00140± .00013nMSE, which corresponds to.0375nRMSE. After condensation, approximation quality

remains stable at.00141± .00028nMSE (= .0376nRMSE) without the application of the compaction algorithmand

27

 0.001

 0.01

 0.1

 1

 0 100 200 300 400 500

nM
S

E
, m

ac
ro

 c
l.

(/
25

.6
k)

number of learning steps (1000s)

XCSF, Rot. HyperEllipsoid with RLS, No Compaction Alg. in f8, σ=.1

TrainSet=All: nMSE
macro cl.

 0.001

 0.01

 0.1

 1

 0 100 200 300 400 500

nM
S

E
, m

ac
ro

 c
l.

(/
25

.6
k)

number of learning steps (1000s)

XCSF, Rot. HyperEllipsoid with RLS in f8, σ=.1

TrainSet=All: nMSE
macro cl.

Fig. 15. With the higher noise level ofσ = .1, XCSF is able to approximate Functionf8 yielding a higher accuracy than other learning

approaches.

slightly decreases to.00206 ± .00034nMSE (= .0453nRMSE) with compaction algorithm. Population size again

dropped significantly in both cases:4059±58 classifiers boil down to482±8 without and156±6 with compaction

algorithm.

Potts [29] reports a value of.05nRMSE for his incremental learning linear model tree algorithm with pruning

(IMTI). He reports worse performances for Schaal and Atkeson’s incremental learning approach (.06nRMSE) as

well as for the ten nearest neighbor approach, which reachesa level of only .08nRMSE. The number of distinct

models used are68± 6 for IMTI and 92± 3 for Schaal and Atkeson’s incremental learning approach [29]. Thus,

XCSF is able to approximate the function more accurately requiring only a slightly higher number of models in its

final population.

3) Neural GAS: As a final comparison, we chose the Neural GAS algorithm, which can also be applied to

function approximation [26], [27]. Neural GAS is similar toXCSF in that it distributes its neurons based on

occurrence frequency and approximates function values locally. However, the distance measure is not altered in

the Neural GAS algorithm and the distribution is not dependent on the accuracy of the resulting function value

approximation. Thus, Neural GAS performance can be considered a base line performance, which should be beaten

by any algorithm that distributes its local approximationsprediction error dependently, given such an additional

distribution bias is useful in the considered approximation problem.

28

 0.001

 0.01

 0.1

 1

 0 50 100 150 200

pr
ed

. e
rr

or

number of learning steps (1000s)

XCSF vs. NeuralGAS (N=2k) in sin(4 π (x+y))

NeuralGAS, Closest: pred.error
NeuralGAS, 10 Closest: pred.error

XCSF: pred.error

 0.001

 0.01

 0.1

 1

 0 50 100 150 200 250 300 350 400

pr
ed

. e
rr

or

number of learning steps (1000s)

XCSF vs. NeuralGAS (N=10k) in sin(4 π (x+y+z))

NeuralGAS, Closest: pred.error
NeuralGAS, 10 Closest: pred.error

XCSF: pred.error

Fig. 16. XCSF clearly outperforms Neural GAS in functionf3 in the two and more pronouncedly in the three dimensional case.

Figure 16 compares performance of XCSF and Neural GAS on function f3 in two and three dimensions.3 In the

two dimensional case, Neural GAS reaches an accuracy level of .0049 ± .00032 (.0075 ± .00050) with a neural

population size of2000 when the (ten) closest neuron(s) are used for the generationof the prediction and during RLS

update. XCSF reaches an accuracy level of.00280± .00055 with 1948±78 different classifiers after200k learning

iterations. After compaction, XCSF only requires101± 11 classifiers to maintain an accuracy of.00315± .00058.

This again confirms that XCSF does not blindly evolve classifiers, but distributes them suitably over the problem

space.

The performance differences are even more pronounced in thethree dimensional case. The Neural GAS algorithm

reaches an error level of.0304± .00231 (.0396± .00212) after400k learning steps with a neural population size of

10, 000 neurons and using the (ten) closest rule(s) for prediction generation and RLS update. XCSF, on the other

hand, reaches an error level of.00340 ± .00157 with a population size of2363 ± 55 before and it maintains an

error level of.00396± .00053 with a population size of131± 12 after compaction.

The results confirm that XCSF with rotating hyperellipsoidsand local RLS approximation yields competitive

performance in comparison to other state-of-the-art learning algorithms. In the case of uniform sampling as

well as in the case of restricted sampling, XCSF reaches accuracy levels of the best incremental statistics-based

learning algorithms published on the topic. In comparison to an unsupervised clustering algorithm with added

linear approximation (Neural GAS), XCSF exhibits superiorperformance in accuracy and compactness of the

3Parameters of Neural GAS were set toǫi = .5, ǫf = .01, λi = 10, λf = .5. Rank-based center adjustment was applied until step150k

(200k in 3D), until which valuesλ and ǫ exponentially decreased according to [26]. RLS withλ = .99 and δRLS = 1000 was applied

(λ = 1 showed slightly worse results due to the continuous center adaptations in Neural GAS). Additionally, to ensure that maximally accurate

approximations are generated by RLS, matrixV was reset after150k steps by multiplying the diagonal elements ofV with δRLS . Twenty

independent runs were conducted.

29

representation. XCSF solves the considered problems without using any sophisticated statistics except the one

directly derived out of its error measures. Space partitioning is not changed heuristically, but is evolved by the

evolutionary component of XCSF. Thus, XCSF is a flexible learning method in which the evolutionary component

can be easily applied to a multitude of other problems including, for example, reinforcement learning problems in

which reward propagation is required [12], [1].

VI. SUMMARY AND CONCLUSIONS

This paper investigated XCS’s function approximation capabilities. We showed that XCS’s performance could

be improved in three ways. (1) Faster and more accurate linear approximation with efficient RLS stabilized and

improved performance. (2) The representation of the classifier condition improved function approximation, in this

case preventing unsuitable classifier overlaps. (3) The operators in the evolutionary process were optimized to enable

faster learning by a more directed evolutionary process. Insum, XCS performance can be improved by optimizing

gradient-based approximation, classifier representation, and the evolutionary process.

Moreover, we introduced a new compaction mechanism to XCSF.The mechanism is based onclosest classifier

matching(CCM) plus condensation (no mutation nor crossover in the GAapplication). In CCM, a fixed number of

closest classifiers match, where closest is defined by the distance measure of each classifier itself. CCM prevents the

generation of holes in the function approximation surface during compaction. Meanwhile, condensation causes the

propagation of well-shaped accurate classifiers and the deletion of overlapping inaccurate classifiers. The mechanism

was able to decrease population sizes by often more than80% hardly affecting performance accuracy. An additional

greedy compaction algorithm, which iteratively deletes classifiers that overlap with low-error classifiers, was shown

to be able to compact the population by often more than90% on average—albeit with a slight accuracy decrease

in non-differentiable or highly irregular functions.

Results showed that the improvements enabled XCSF to solve function approximation problems of up to seven

dimensions with highly compact final representations. Moreover, XCSF was shown to be noise robust and able to

generalize well to unseen problem instances. In general, itwas highlighted that XCSF is a learning mechanism

that clusters the problem space to ensure maximally accurate approximations in the experienced subspaces. It

outperforms general clustering algorithms, such as NeuralGAS [26], [27], in function approximation tasks, and

it approximates and partially outperforms more directed, iterative function approximation mechanisms published

elsewhere [29], [28].

In conclusion, XCSF was shown to be a flexible, easily adaptable learning system that is applicable to many

types of predictive tasks, and particularly tasks that can be approximated with local, partially-overlapping gradient-

based estimates. Future work will evaluate the XCSF enhancements in datamining tasks as well as in reinforcement

learning problems. Moreover, the mechanism is planned to beintegrated into a cognitive systems architecture, in

which the predictions manipulate neural gates in a recurrent neural network structure.

30

Acknowledgments

This work was supported by the European commission contractno. FP6-511931. The authors would like to thank

the three reviewers for their helpful comments and suggestions. We especially acknowledge the suggestion to alter

the RLS matrix initialization, which improved XCSF performance even further.

REFERENCES

[1] S. W. Wilson, “Classifier fitness based on accuracy,”Evolutionary Computation, vol. 3, no. 2, pp. 149–175, 1995.

[2] ——, “Function approximation with a classifier system,”Proceedings of the Third Genetic and Evolutionary Computation Conference

(GECCO-2001), pp. 974–981, 2001.

[3] ——, “Classifiers that approximate functions,”Natural Computing, vol. 1, pp. 211–234, 2002.

[4] M. V. Butz, D. E. Goldberg, and K. Tharakunnel, “Analysisand improvement of fitness exploitation in XCS: Bounding models, tournament

selection, and bilateral accuracy,”Evolutionary Computation, vol. 11, pp. 239–277, 2003.

[5] M. V. Butz, T. Kovacs, P. L. Lanzi, and S. W. Wilson, “Toward a theory of generalization and learning in XCS,”IEEE Transactions on

Evolutionary Computation, vol. 8, pp. 28–46, 2004.

[6] S. W. Wilson, “Generalization in the XCS classifier system,” Genetic Programming 1998: Proceedings of the Third Annual Conference,

pp. 665–674, 1998.

[7] E. Bernadó, X. Llorà, and J. M. Garrell, “XCS and GALE: Acomparative study of two learning classifier systems and sixother learning

algorithms on classification tasks,” inAdvances in Learning Classifier Systems (LNAI 2321), P. L. Lanzi, W. Stolzmann, and S. W. Wilson,

Eds. Berlin Heidelberg: Springer-Verlag, 2002, pp. 115–132.

[8] E. Bernadó-Mansilla and J. M. Garrell-Guiu, “Accuracy-based learning classifier systems: Models, analysis, and applications to classification

tasks,”Evolutionary Computation, vol. 11, pp. 209–238, 2003.

[9] M. V. Butz, Rule-Based Evolutionary Online Learning Systems: A Principled Approach to LCS Analysis and Design. Berlin Heidelberg:

Springer-Verlag, 2006.

[10] P. W. Dixon, D. W. Corne, and M. J. Oates, “A preliminary investigation of modified XCS as a generic data mining tool,” in Advances

in learning classifier systems: Fourth international workshop, IWLCS 2001 (LNAI 2321), P. L. Lanzi, W. Stolzmann, and S. W. Wilson,

Eds. Berlin Heidelberg: Springer-Verlag, 2002, pp. 133–150.

[11] S. W. Wilson, “Get real! XCS with continuous-valued inputs,” in Learning classifier systems: From foundations to applications (LNAI

1813), P. L. Lanzi, W. Stolzmann, and S. W. Wilson, Eds. Berlin Heidelberg: Springer-Verlag, 2000, pp. 209–219.

[12] P. L. Lanzi, D. Loiacono, S. W. Wilson, and D. E. Goldberg, “Classifier prediction based on tile coding,”GECCO 2006: Genetic and

Evolutionary Computation Conference, vol. 2, pp. 1497–1504, 2006.

[13] ——, “Extending XCSF beyond linear approximation,”GECCO 2005: Genetic and Evolutionary Computation Conference: Volume 2, pp.

1827–1834, 2005.

[14] M. V. Butz, D. E. Goldberg, and P. L. Lanzi, “Computational complexity of the xcs classifier system,” inFoundations of Learning Classifier

Systems, ser. Studies in Fuzziness and Soft Computing, L. Bull and T.Kovacs, Eds. Berlin Heidelberg: Springer-Verlag, 2005, pp. 91–126.

[15] C. Stone and L. Bull, “For real! XCS with continuous-values inputs,”Evolutionary Computation, vol. 11, pp. 299–336, 2003.

[16] M. V. Butz, “Kernel-based, ellipsoidal conditions in the real-valued XCS classifier system,”GECCO 2005: Genetic and Evolutionary

Computation Conference: Volume 2, pp. 1835–1842, 2005.

[17] J. A. R. Marshall and T. Kovacs, “A representational ecology for learning classifier systems,”GECCO 2006: Genetic and Evolutionary

Computation Conference, vol. 2, pp. 1529–1536, 2006.

[18] P. L. Lanzi and S. W. Wilson, “Using convex hulls to represent classifier conditions,”GECCO 2006: Genetic and Evolutionary Computation

Conference, vol. 2, pp. 1481–1488, 2006.

[19] B. Widrow and M. Hoff, “Adaptive switching circuits,”Western Electronic Show and Convention, vol. 4, pp. 96–104, 1960.

[20] P. L. Lanzi, D. Loiacono, S. W. Wilson, and D. E. Goldberg, “Prediction update algorithms for XCSF: RLS, kalman filterand gain

adaptation,”GECCO 2006: Genetic and Evolutionary Computation Conference, vol. 2, pp. 1505–1512, 2006.

31

[21] J. Drugowitsch and A. M. Barry, “A formal framework and extensions for function approximation in learning classifier systems,” Dept. of

Computer Science, University of Bath, Bath, UK, Tech. Rep. CSBU2006-01, 2006, iSSN 1740-9497.

[22] L. Bull and T. O’Hara, “Accuracy-based neuro and neuro-fuzzy classifier systems,”Proceedings of the Fourth Genetic and Evolutionary

Computation Conference (GECCO-2002), pp. 905–911, 2002.

[23] J. Hurst and L. Bull, “A neural learning classifier system with self-adaptive constructivism for mobile robot learning,” Artificial Life,

vol. 12, pp. 1–28, 2006.

[24] P. W. Dixon, D. W. Corne, and M. J. Oates, “A ruleset reduction algorithm for the xcs learning classifier system,” inLearning classifier

system: Fifth international workshop, IWLCS 2002 (LNAI 2661), P. L. Lanzi, W. Stolzmann, and S. W. Wilson, Eds. Berlin Heidelberg:

Springer-Verlag, 2003, pp. 20–29.

[25] S. W. Wilson, “Compact rulesets from XCSI,” inAdvances in learning classifier systems: Fourth international workshop, IWLCS 2001

(LNAI 2321), P. L. Lanzi, W. Stolzmann, and S. W. Wilson, Eds. Berlin Heidelberg: Springer-Verlag, 2002, pp. 196–208.

[26] T. M. Martinetz, S. G. Berkovitsch, and K. J. Schulten, “”neural-gas” network for vector quantization and its application to time-series

prediction,” IEEE Transactions on Neural Networks, vol. 4, pp. 558–569, 1993.

[27] T. M. Martinetz and K. Schulten, “Topology representing networks,”Neural Networks, vol. 7, pp. 507–522, 1994.

[28] S. Schaal and C. G. Atkeson, “Constructive incrementallearning from only local information,”Neural Computation, vol. 10, pp. 2047–2084,

1998.

[29] D. Potts, “Incremental learning of linear model trees,” Proceedings of the Twenty-First International Conferenceon Machine Learning

(ICML-2004), pp. 663–670, 2004.

[30] L. B. Booker, D. E. Goldberg, and J. H. Holland, “Classifier systems and genetic algorithms,”Artificial Intelligence, vol. 40, pp. 235–282,

1989.

[31] J. H. Holland and J. S. Reitman, “Cognitive systems based on adaptive algorithms,” inPattern directed inference systems, D. A. Waterman

and F. Hayes-Roth, Eds. New York: Academic Press, 1978, pp. 313–329.

[32] M. V. Butz and S. W. Wilson, “An algorithmic descriptionof XCS,” in Advances in learning classifier systems: Third international

workshop, IWLCS 2000 (LNAI 1996), P. L. Lanzi, W. Stolzmann, and S. W. Wilson, Eds. Berlin Heidelberg: Springer-Verlag, 2001, pp.

253–272.

[33] C. G. Atkeson, A. W. Moore, and S. Schaal, “Locally weighted learning,”Artificial Intelligence Review, vol. 11, pp. 11–73, 1997.

[34] T. Kovacs, “Deletion schemes for classifier systems.”Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-99),

pp. 329–336, 1999.

[35] M. V. Butz, D. E. Goldberg, P. L. Lanzi, and K. Sastry, “Bounding the population size to ensure niche support in XCS,” Illinois Genetic

Algorithms Laboratory, University of Illinois at Urbana-Champaign, IlliGAL report 2004033, 2004.

[36] T. M. Mitchell, Machine Learning. Boston, MA: McGraw-Hill, 1997.

[37] C. Stone and L. Bull, “An analysis of continuous-valuedrepresentations for learning classifier systems,” inFoundations of Learning

Classifier Systems, ser. Studies in Fuzziness and Soft Computing, L. Bull and T.Kovacs, Eds. Berlin Heidelberg: Springer-Verlag, 2005,

pp. 127–175.

[38] M. Ebner, M. Shackleton, and R. Shipman, “How neutral networks influence evolvability,”Complexity, vol. 7, no. 2, pp. 19–33, 2001.

[39] E. W., “Euler angles,” From MathWorld–A Wolfram Web Resource. http://mathworld.wolfram.com/EulerAngles.html, 1999.

[40] P. L. Lanzi, D. Loiacono, S. W. Wilson, and D. E. Goldberg, “Generalization in the XCSF classifier system: Analysis, improvement, and

extensions,” Illinois Genetic Algorithms Laboratory, University of Illinois at Urbana-Champaign, IlliGAL report 2005012, 2005.

[41] S. Haykin,Adaptive filter theory, 4th ed. Upper Saddle River, NJ: Prentice Hall, 2002.

[42] L. B. Booker, “Improving the performance of genetic algorithms in classifier systems,”Proceedings of an International Conference on

Genetic Algorithms and their Applications, pp. 80–92, 1985.

[43] A. Bonarini, C. Bonacina, and M. Matteucci, “Fuzzy and crisp representations of real-valued input for learning classifier systems,” in

Learning classifier systems: From foundations to applications (LNAI 1813), P. L. Lanzi, W. Stolzmann, and S. W. Wilson, Eds. Berlin

Heidelberg: Springer-Verlag, 2000, pp. 107–124.

[44] L. B. Booker, “Classifier systems that learn internal world models,”Machine Learning, vol. 3, pp. 161–192, 1988.

32

[45] M. V. Butz, D. E. Goldberg, and P. L. Lanzi, “Bounding learning time in XCS,” Proceedings of the Sixth Genetic and Evolutionary

Computation Conference (GECCO-2004): Part II, pp. 739–750, 2004.

33

