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Abstract. The accuracy-based fitness approach in XCS is one of the
most significant changes in comparison with original learning classifier
systems. Nonetheless, neither the scaled accuracy function, nor the im-
portance of the relative fitness approach has been investigated in detail.
The recent introduction of tournament selection to XCS has shown to
make the system more independent from parameter settings and scal-
ing issues. The question remains if relative accuracy itself is actually
necessary in XCS or if the evolutionary process could be based directly
on error. This study investigates advantages and disadvantages of pure
error-based fitness vs. relative accuracy-based fitness in XCS.

1 Introduction

Recent advances in XCS understanding have shown that the accuracy-based fit-
ness approach can guide the evolutionary process to the discovery of accurate,
maximally general classifiers [7]. Additionally, with the introduction of tour-
nament selection, XCS gained a more reliable and persistent pressure towards
accuracy [9]. However, it did not become clear why accuracy needs to be scaled
nor why fitness is derived from the relative accuracy.

This study investigates the fitness approach in XCS. The relative accuracy-
based fitness approach underlies several peculiar parameter choices which need
to be investigated and clarified. Moreover, although XCS’s fitness approach was
successful in many different investigations (e.g. [2,11,4]), it is not clear if the
additional accuracy bias is necessary for a successful evolutionary process in
XCS. In fact, it seems possible that XCS selection with tournament selection
could be solely based on minimizing error instead of maximizing accuracy. In
this way, the additional accuracy bias would become irrelevant and parameter
estimations should reach less noisy values faster.

The remainder of this study is structured as follows. The next section gives
a short overview over the XCS system with the relevant parameter initialization
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method and update methods. Next, we study the effect of basing selection directly
on error instead of accuracy-based fitness. Summary and conclusions conclude the
study.

2 XCS Overview

XCS is a very general learning mechanism that combines gradient-based op-
timization of predictions with evolutionary-based space partitioning. The par-
titions evolve to enable maximally accurate predictions. While XCS was also
successfully applied in multi-step problems [22,15,16,1], we restrict this study to
classification problems to avoid the additional problem of reward propagation.
However, the insights of this study should readily carry over to multi-step prob-
lems. This section introduces XCS as a pure classification system providing the
necessary details to comprehend the remainder of this work. For a more com-
plete introduction to XCS the interested reader is referred to the original paper
[22] and the algorithmic description [10].

We define a classification problem as a problem that consists of problem in-
stances s ∈ S that need to be classified by XCS with one of the possible classifica-
tions a ∈ A. The problem then provides scalar payoff R ∈ � with respect to the
made classification. The goal for XCS is to choose the classification that results in
the highest payoff. To do that, XCS is designed to learn a complete mapping from
any possible s×a combination to an accurate payoff value. To keep things simple,
we investigate problems with Boolean input and classification, i.e. S ⊆ {0, 1}L

where L denotes the fixed length of the input string and A = {0, 1}.
XCS evolves a population [P ] of rules, or classifiers. Each classifier in XCS

consists of five main components. The condition C ∈ {0, 1, #}L specifies the sub-
space of the problem instances in which the classifier is applicable, or matches.
The “don’t care” symbol # matches in all input cases. The action part A ∈ A
specifies the advocated action, or classification. The payoff prediction p ap-
proaches the average payoff encountered after executing action A in situations in
which condition C matches. The prediction error ε estimates the average devia-
tion, or error, of the payoff prediction p. The fitness reflects the average relative
accuracy of the classifier with respect to other overlapping classifiers.

XCS iteratively updates its knowledge base with respect to each problem
instance. Given current input s, XCS forms a match set [M ] consisting of all
classifiers in [P ] whose conditions match s. If an action is not represented in
[M ], a covering classifier is created that matches s (#-symbols are inserted with
a probability of P# at each position). For each classification, XCS forms a payoff
prediction P (a), i.e. the fitness-weighted average of all reward prediction esti-
mates of the classifiers in [M ] that advocate classification a. The payoff predic-
tions determine the appropriate classification. After the classification is selected
and sent to the problem, payoff R is provided according to which XCS updates all
classifiers in the current action set [A] which comprises all classifiers in [M ] that
advocate the chosen classification a. After update and possible GA invocation,
the next iteration starts.
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Prediction and prediction error parameters are update in [A] by p ← p +
β(R − p) and ε ← ε + β(|R − p| − ε) where β (β ∈ [0, 1]) denotes the learning
rate. The fitness value of each classifier in [A] is updated according to its current
scaled relative accuracy κ′:

κ =

{
1 if ε < ε0

α
(

ε0
ε

)ν otherwise
κ′ =

κ∑
x∈[A]

κx
(1)

F ← F + β(κ′ − F ) (2)

The parameter ε0 (ε0 > 0) controls the tolerance for prediction error ε; param-
eters α (α ∈ (0, 1)) and ν (ν > 0) are constants controlling the rate of decline
in accuracy κ when ε0 is exceeded. The accuracy values κ in the action set [A]
are then converted to set-relative accuracies κ′. Finally, classifier fitness F is
updated towards the classifier’s current set-relative accuracy. All parameters ex-
cept for fitness F are updated using the moyenne adaptive modifée technique
[19]. This technique sets parameter values directly to the average of the so far
encountered cases as long as the experience of a classifier is still less than 1/β.
Each time the parameters of a classifier are updated, the experience counter exp
of the classifier is increased by one.

A GA is invoked in XCS if the average time since the last GA application on
the classifiers in [A] exceeds threshold θga. The GA selects two parental classi-
fiers using roulette-wheel selection [22] or the recently introduced tournament
selection [9]. Two offspring are generated reproducing the parents and applying
crossover and mutation. Parents stay in the population competing with their
offspring. We apply free mutation in which each attribute of the offspring condi-
tion is mutated to the other two possibilities with equal probability. Parameters
of the offspring are inherited from the parents, except for the experience counter
exp which is set to one, the numerosity num which is set to one, and the fitness
F which is multiplied by 0.1. In the insertion process, subsumption deletion may
be applied [23] to stress generalization.

The population of classifiers [P ] is of fixed size N . Excess classifiers are deleted
from [P ] with probability proportional to an estimate of the size of the action
sets that the classifiers occur in (stored in the additional parameter as). If the
classifier is sufficiently experienced and its fitness F is significantly lower than the
average fitness of classifiers in [P ], its deletion probability is further increased.

3 Error-Based Selection

Although an error-based selection method still pursues the XCS goal of evolv-
ing a complete and accurate reward map of a problem several differences can
be identified. This section discusses these differences and experimentally inves-
tigates error-based fitness in XCS.
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3.1 Major Differences

As mentioned in the XCS overview, selection is usually based on the set-relative
accuracy derived fitness estimate of a classifier. In offspring classifiers this fitness
is usually derived from the parents (sometimes also from the average fitness in the
population) and multiplied by 0.1 to be pessimistic about the offspring quality.
Dependent on the learning rate β, the moyenne adaptive modifée (MAM) tech-
nique, the experience counter, and the accuracy scaling, more accurate offspring
reaches a fitness value higher than the parental value after a certain amount of
updates. Only then the more-accurate offspring has the chance to outperform
its parents and take-over the specific environmental niche it covers. The number
of influences suggest that complex interactions of different factors can occur.

Similar to the fitness approach, though, it seems also possible to base selec-
tion directly on the prediction error estimate of a classifier. While accuracy-based
fitness needs to be maximized, error-based fitness needs to be minimized. Addi-
tional effects are expectable, though, since the error estimate is directly derived
from the parental value (without a pessimistic increase) and the error estimate
is not set relative, effectively disabling fitness sharing. While the former factor
should have the effect that offspring sometimes causes additional disruption, the
latter factor might result in weaker niche support pressure. These factors are
investigated in our experimental study.

Interestingly, though, due to the lack of fitness sharing, additionally, over-
lapping classifiers are enabled in this framework. The relative-accuracy-based
fitness approach in the original XCS causes the evolution of non-overlapping
niches that cover the whole reward map of a learning problem (see e.g. [13,14]
for further analyses). Error-based fitness will cause the evolution of a similar
complete reward map but allows overlapping classifiers. This might be advanta-
geous in unevenly overlapping niches, but has the drawback that more classifiers
need to be sustained to continuously cover the whole problem space. The ad-
ditional classifiers also undergo additional competition due to the unrestricted
population-wide deletion technique.

3.2 Implementation

Error-based selection is realized applying tournament selection. Instead of max-
imizing the fitness estimate of a classifier, the error estimate is minimized. Thus,
the classifier wins in the current tournament in an action set that has the lowest
reward prediction error estimate. Parameter updates are not changed.

Additionally, to free XCS completely from the fitness evaluation, the predic-
tion array needs to be formed with respect to a classifier’s error estimate and not
to its fitness estimate. Since the error estimate in young classifiers is very noisy,
the reward prediction estimate is less trusted than in elder classifiers. Widrow
& Stearns (1985) formalized how the reward prediction error can be expected to
vary with respect to the number of encountered reward prediction updates [20].
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Assuming the encountering of a perfect signal P and the initial estimate pi, then
the error of the actual estimate p(t) can be determined as follows [20]:

p(t) = P + (1 − β)t(pi − P ) (3)

Assuming the worst-case initialization error εwc = max{pi; Pmax − pi} as the
initial error and assuming furthermore a perfect reward signal from then on, the
maximal difference from the actual average encountered reward can be estimated
as follows:

Δp = (1 − β)expεwc (4)

Since the prediction error of a classifier can reach on average half the maximal
reward prediction Pmax/2 (temporarily it might also lie a little above this value),
the maximal error in the reward prediction error can be determined as follows
denoting εεwc as the maximum possible error of the error and assuming a perfect
signal.

Δε = (1 − β)expεεwc (5)

The actual error of a classifier can now be estimated somewhat pessimistic as the
actual error estimate plus the worst-case differing amount (assuming a perfect
signal).

ε′ = ε + Δε (6)

The prediction array may now be weighted according to the estimated error ε′

in conjunction with the actual reward prediction value p:

PA(a) =

∑
cl∈[M ]∧cl.A=a cl.p · 1/cl.ε′ · cl.num∑

cl∈[M ]∧cl.A=a 1/cl.ε′ · cl.num
(7)

This prediction array determination consequently ignores fitness but weights the
reward estimates according to the actual inverse error estimate. Finally, deletion
cannot be biased on the fitness estimate of a classifier as originally proposed
and investigated in [12]. Consequently, deletion is proportional to the action set
size estimate alone as in the original XCS implementation [22]. The next section
investigates the impact of these modifications in several typical Boolean function
problems.

3.3 Experimental Investigation

Several questions need to be investigated in the new approach. First, the question
is if in fact overlapping, accurate classifiers evolve. Next, the speed of evolution
will show if the direct error dependence allows a faster or slower detection of
the relevant environmental niches and thus, if performance speed increases or
decreases. Finally, due to the additional overlapping classifiers, the support of
each environmental niche needs to be investigated. Will XCS be able to sustain
the representation of the complete problem with the same number of classifiers?

To answer these questions, we apply XCS to the multiplexer function [22,6]
and the count ones problem [6,8].
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Table 1 shows the typical difference in the classifier lists of relative-accuracy-
based fitness and error-based fitness in the six multiplexer. While in the relative
case mainly non-overlapping classifiers evolve, that explicitly identify each envi-
ronmental niche, in the error-based case those classifiers evolve as well as classifiers
that overlap two niches. For example, niches 01*0**-1 and 11***0-1 (specifying
accurately the incorrect class) would be represented perfectly by the similar clas-
sifiers substituting don’t care symbols for the star symbols. These evolve in the
relative-accuracy-based case. However, in the error-based case, also the overlap-
ping classifiers gain a high numerosity value such as classifier #1#0#0-1. Note that
in the exemplar runs, the maximal population size was set to N = 2000 so that
niche support was not a problem in this case. The overlapping classifiers gain a
similar numerosity (on average) as the non-overlapping ones do. Hardly any pres-
sure towards the non-overlapping classifiers can be detected.

Table 1. Typical resulting classifier list for relative-accuracy-based fitness and error-
based fitness in the 6-multiplexer problem

Relative-Accuracy Based
C A p ε F num exp

11###0 1 0 0 0.836775 85 5134
11###1 1 1000 0 0.792768 73 5478
10##0# 1 0 0 0.702730 67 5847
10##1# 1 1000 0 0.653202 59 5270
01#0## 1 0 0 0.471205 49 5306
01#1## 1 1000 0 0.418793 38 5306
01#00# 1 0 0 0.252941 28 1976
001### 1 1000 0 0.301881 28 5726
#00#0# 1 0 0 0.242931 27 4925
000### 1 0 0 0.328251 27 5529
01#01# 1 0 0 0.234058 26 2557
0010## 1 1000 0 0.272719 25 2095
10##10 1 1000 0 0.256431 24 2269
10##01 1 0 0 0.232770 24 2481
01#10# 1 1000 0 0.242531 22 2570
01#0#1 1 0 0 0.210961 22 2636
01#11# 1 1000 0 0.222898 20 2651
000##1 1 0 0 0.230527 20 2740
001#0# 1 1000 0 0.204827 20 2786
001##0 1 1000 0 0.198300 19 1849
01#1#0 1 1000 0 0.214924 19 2692
000#1# 1 0 0 0.222182 19 2667
001##1 1 1000 0 0.202509 19 2867
#1#0#0 1 0 0 0.170386 18 5351

Error Based
C A p ε F num exp

01#0## 1 0 0 0.900787 106 5994
#1#1#1 1 1000 0 0.637662 91 4973
1###00 1 0 0 0.587410 82 5651
#01#1# 1 1000 0 0.532509 81 2592
0#11## 1 1000 0 0.429461 65 3552
000### 1 0 0 0.712403 63 5175
#00#0# 1 0 0 0.435288 62 4410
#1#0#0 1 0 0 0.369763 46 5853
11###1 1 1000 0 0.504067 41 4982
10##10 1 1000 0 0.412228 38 325
10##0# 1 0 0 0.491715 36 4408
01#1## 1 1000 0 0.409011 32 1174
11###0 1 0 0 0.445064 32 4524
10##1# 1 1000 0 0.288221 28 1054
1###11 1 1000 0 0.270195 27 5872
001##1 1 1000 0 0.239064 25 466
001### 1 1000 0 0.270045 19 1891
0#11#0 1 1000 0 0.139190 13 97
#00#00 1 0 0 0.049742 8 75
0001## 1 0 0 0.053201 5 67
#01#11 1 1000 0 0.043135 5 102
#1#1#0 1 405 501 0.000000 4 1654
1###0# 1 161 302 0.000000 3 191
00#0## 1 519 509 0.000000 3 316

Further experiments in the larger 20 multiplexer problem are displayed in
Figure 1 showing the normal multiplexer problem, and the problem with addi-
tional Gaussian noise (adding a Gaussian Noise with standard deviation σ = 300
on the provided reward reflecting noise in the fitness evaluation function).

All runs show that XCS with error-based fitness is able to solve the problem as
well. The evolutionary speed is slightly decreased, that is, perfect performance
is reached after a larger number of steps in comparison to relative-accuracy-
based fitness. Part of the explanation for this decrease in learning speed can
be attributed to the larger number of classifiers that is evolved. Additionally,
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Fig. 1. Slight advantages due to relative-accuracy based selection can be observed
in the multiplexer problem. However, the simplicity of error-based selection remains
appealing.

parameter initialization issues appear relevant. Since fitness is decreased by 0.1
in offspring classifiers and fitness is updated by the Widrow-Hoff rule from the
beginning, disruption by young classifiers appears to be prevented better in the
fitness-based selection case than in the error-based selection case.

The relative fitness approach also results in a slightly stronger generalization
pressure. The pressure appears to be mainly due the initial decrease in offspring
fitness. The decrease in fitness assures that similarly accurate parents win the
tournament against their offspring. More specialized classifiers undergo param-
eter updates less frequently so that the more specialized a classifier the longer
it takes for it to exceed its parent’s fitness. Thus, more generalized similarly
accurate classifiers reach higher fitness values faster.

Besides the multiplexer problem, we experiment with the count ones problem
in which overlapping niches need to be sustained to ensure the representation
of a complete problem solution. Besides Gaussian noise, we also added alter-
nating noise, in which the incorrect reward is provided with a probability of
0.15, reflecting noise with incorrect classification cases [6]. Similar performance
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Fig. 2. Differences in the count ones problem with string length 100 and 7 relevant
bits are minor. Lower β rates decrease convergence speed but increase accuracy.

observations can be made. The error-based approach again suffers more from
more offspring disruption so that a reliable 100% performance is reached slighlty
slower. However, particularly in the noisy problem cases, XCS with error-based
selection reaches a slightly higher performance level. Thus, fitness sharing may
cause disruption in problems in which overlapping niches actually need to be
sustained for a complete problem solution.
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4 Summary and Conclusions

Summing up, we could show that an XCS in which selection is purely based
on error is able to solve similar Boolean function problems as the normal XCS.
Hereby, performance was slightly worse than in the original XCS approach but
with the gain of having less parameters per classifier and depending less on
learning rate β. Moreover, the peculiar accuracy-scaling function is not necessary
anymore. Parameter estimates can now be directly inherited from the parents.
An additional parameter estimate decrease is not necessary.

Despite the successful application, it became also clear that the approach
deserves further investigation. A similar error estimate as done for the predic-
tion array calculation might be useful in the selection mechanism to prevent
disruption in the error-based case. Other mechanisms are imaginable to prevent
disruption but still ensure detection of better classifiers fast.

In conclusion, the results show that fitness sharing is actually not necessary
in the XCS framework. Niching is assured due to the niche-based reproduction
in conjunction with population-wide deletion. Thus, while fitness-sharing is very
likely to be mandatory in other LCS frameworks, such as the ZCS system [21,3],
niching in XCS is accomplished by the niche-based reproduction mechanism.
This niching effect and its impact on population sizing in XCS is investigated in
detail elsewhere [5,4].

The study also points out that parameter initialization in offspring classifiers
is still in its infancy. Proper mathematical approaches to the parameter estima-
tions are necessary to understand possible disruption and ensure fast detection
of more accurate (or lower error) classifiers. Additionally, the MAM technique
might be questioned because initial, large updates may be highly disruptive.
However, parameter initialization becomes even more crucial once pure Widrow-
Hoff updates are applied (since then an incorrect initial value can cause strong
disruption). More resent modifications of XCS showed that the prediction part
in XCS is generally very flexible enabling the estimation of linear and polyno-
mial predictions approximated with recursive least squares or the pseudo inverse
[17,18].

The results herein show that in strongly overlapping problems, the fitness
sharing approach may be reconsidered or may actually be obsolete. Future anal-
yses on this matter will be relevant not only for the XCS classifier system but also
for LCSs in general since all (Michigan-style) classifier systems rely on iterative
parameter updates and thus noisy fitness estimates.
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8. Martin V. Butz, M. Pelikan, X. Llorà, and D.E. Goldberg. Extracted global struc-
ture makes local building block processing effective in XCS. GECCO 2005: Genetic
and Evolutionary Computation Conference: Volume 1, pages 655–662, 2005.

9. Martin V. Butz, Kumara Sastry, and David E. Goldberg. Tournament selection in
XCS. Proceedings of the Fifth Genetic and Evolutionary Computation Conference
(GECCO-2003), pages 1857–1869, 2003.

10. Martin V. Butz and Stewart W. Wilson. An algorithmic description of XCS.
In P. L. Lanzi, W. Stolzmann, and S. W. Wilson, editors, Advances in learning
classifier systems: Third international workshop, IWLCS 2000 (LNAI 1996), pages
253–272. Springer-Verlag, Berlin Heidelberg, 2001.

11. Phillip W. Dixon, David W. Corne, and Martin J. Oates. A preliminary investiga-
tion of modified XCS as a generic data mining tool. In P. L. Lanzi, W. Stolzmann,
and S. W. Wilson, editors, Advances in learning classifier systems: Fourth inter-
national workshop, IWLCS 2001 (LNAI 2321), pages 133–150. Springer-Verlag,
Berlin Heidelberg, 2002.



114 M.V. Butz, D.E. Goldberg, and P.L. Lanzi

12. Tim Kovacs. Deletion schemes for classifier systems. Proceedings of the Genetic
and Evolutionary Computation Conference (GECCO-99), pages 329–336, 1999.

13. Tim Kovacs. Strength or Accuracy? Fitness calculation in learning classifier sys-
tems. In Pier Luca Lanzi, Wolfgang Stolzmann, and Stewart W. Wilson, editors,
Learning classifier systems: From foundations to applications (LNAI 1813), pages
143–160. Springer-Verlag, Berlin Heidelberg, 2000.

14. Tim Kovacs. Towards a theory of strong overgeneral classifiers. Foundations of
Genetic Algorithms 6, pages 165–184, 2001.

15. Pier Luca Lanzi. An analysis of generalization in the XCS classifier system. Evo-
lutionary Computation, 7(2):125–149, 1999.

16. Pier Luca Lanzi. An extension to the XCS classifier system for stochastic envi-
ronments. Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO-99), pages 353–360, 1999.

17. Pier Luca Lanzi, Daniele Loiacono, Stewart W. Wilson, and David E. Goldberg.
Extending XCSF beyond linear approximation. GECCO 2005: Genetic and Evo-
lutionary Computation Conference: Volume 2, pages 1827–1834, 2005.

18. Pier Luca Lanzi, Daniele Loiacono, Stewart W. Wilson, and David E. Goldberg.
Generalization in XCSF for real inputs. IlliGAL report 2005023, Illinois Genetic
Algorithms Laboratory, University of Illinois at Urbana-Champaign, 2005.

19. Gilles Venturini. Adaptation in dynamic environments through a minimal proba-
bility of exploration. From Animals to Animats 3: Proceedings of the Third Inter-
national Conference on Simulation of Adaptive Behavior, pages 371–381, 1994.

20. Bernard Widrow and Samuel D. Stearns. Adaptive Signal Processing. Prentice-
Hall, Englewood Cliffs, New Jersey, 1985.

21. Stewart W. Wilson. ZCS: A zeroth level classifier system. Evolutionary Computa-
tion, 2:1–18, 1994.

22. Stewart W. Wilson. Classifier fitness based on accuracy. Evolutionary Computa-
tion, 3(2):149–175, 1995.

23. Stewart W. Wilson. Generalization in the XCS classifier system. Genetic Program-
ming 1998: Proceedings of the Third Annual Conference, pages 665–674, 1998.


	Introduction
	XCS Overview
	Error-Based Selection
	Major Differences
	Implementation
	Experimental Investigation

	Summary and Conclusions


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




