
Data Mining in Learning Classifier Systems:
Comparing XCS with GAssist

Jaume Bacardit1 and Martin V. Butz2

1 ASAP, School of Computer Science and IT, University of Nottingham, Jubilee
Campus, Wollaton Road, Nottingham, NG8 1BB, UK

jqb@cs.nott.ac.uk
http://www.cs.nott.ac.uk/ jqb/

2 Department of Cognitive Psychology, University of Würzburg, 97070 Würzburg,
Germany

butz@psychologie.uni-wuerzburg.de
http://www-illigal.ge.uiuc.edu/ butz/

Abstract. This paper compares performance of the Pittsburgh-style
system GAssist with the Michigan-style system XCS on several datamin-
ing problems. Our analysis shows that both systems are suitable for
datamining but have different advantages and disadvantages. The study
does not only reveal important differences between the two systems but
also suggests several structural properties of the underlying datasets.

1 Introduction

Successful data mining applications are important for modern-day learning clas-
sifier systems (LCSs). Additionally, the study and comparison of different types
of data miners on various data sets may enable the identification of strengths
and weaknesses of the respective data miners. Several types of problem difficulty
can be distinguished in data mining including data volume, search space size
and type, complexity of the concept, noise in the data, the handling of missing
values, or the problem of over-fitting.

Successful datamining applications of learning classifier systems have been
shown in the past [5] investigating and comparing performance of the accuracy-
based Michigan-style LCS XCS [11] and the Pittsburgh-style LCS GALE [10].
Both systems showed competent performance in comparison to six other machine
learning systems.

Recently, new systems have appeared in the LCS field, like the Pitt-style LCS
GAssist [2]. Also, there are improved versions of already established systems,
like the XCS with tournament selection [8]. The objectives of this paper are two-
fold: (1) We provide further performance results of GAssist and XCS on several
interesting datasets. (2) We compare and investigate performance of the two
systems revealing problem dependencies, suitability of the respective approaches,
as well as over-fitting or over-generalization tendencies.

X. Llorà et al. (Eds.): IWLCS 2003-2005, LNAI 4399, pp. 282–290, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Data Mining in Learning Classifier Systems: Comparing XCS with GAssist 283

2 Framework

Before we start with the datamining analysis, this section provides a short in-
troduction to the LCSs under investigation.

2.1 GAssist

GAssist [2] is a Pittsburgh genetic-based machine learning system descendant
of GABIL [9]. The system applies a near-standard GA that evolves individuals
that represent complete problem solutions. An individual consists of an ordered,
variable-length rule set. Bloat control is achieved by a combination of a fitness
function based on the minimum description length (MDL) principle and a rule
deletion operator [3].

The knowledge representation used for real-valued attributes is called adap-
tive discretization intervals rule representation (ADI) [1]. This representation
uses the semantics of the GABIL rules (conjunctive normal form predicates),
but applies non-static intervals formed by joining several neighbor discretization
intervals. These intervals can evolve through the learning process splitting or
merging among them potentially using several discretizers at the same time.

The system also uses a windowing scheme called ILAS (incremental learning
with alternating strata) [4]. This scheme stratifies the training set into s subsets
of equal size and approximately uniform class distribution. Each GA iteration
uses a different strata to perform its fitness computation, using a round-robin
policy. This method showed to introduce an additional implicit generalization
pressure to GAssist. 1

Figure 1 presents the pseudocode of ILAS. This kind of scheme is reported to
apply some extra generalization pressure to the system, which is an interesting
feature for data mining domains.

2.2 XCS

The XCS classifier system [11,12,7] evolves online a set of condition-action rules,
that is, a population of classifiers. In difference to GAssist, in XCS the population
as a whole represents the problem solution. XCS differs in two fundamental ways
to other Michigan-style LCSs: (1) Rule fitness is derived from rule accuracy

1 GAssist’s parameters were set as follows: Crossover probability 0.6; tournament se-
lection; tournament size 3; population size 400; probability of mutating an individual
0.6; initial number of rules per individual 20; probability of “1” in initialization 0.75;
Rule Deletion Operator: Iteration of activation: 5; minimum number of rules: num-
ber of classes of domain +3; MDL-based fitness function: Iteration of activation 25;
initial theory length ratio: 0.075; weight relax factor: 0.9. ADI knowledge represen-
tation: split and merge probability: 0.05; reinitialize probability at initial iteration:
0.02; reinitialize probability at final iteration: 0; merge restriction probability: 0.5;
maximum number of intervals: 5; set of uniform discretizers used: 4, 5, 6, 7, 8, 10,
15, 20 and 25 bins; iterations: maximum of 1500. Results are averaged over 150
experiments.

284 J. Bacardit and M.V. Butz

Procedure Incremental Learning with Alternating Strata
Input : Examples,NumStrata,NumIterations
Initialize GA
Reorder Examples in NumStrata parts of approximately
equal class distribution
Iteration = 0
StrataSize = size(Examples)/NumStrata
While Iteration < NumIterations

If Iteration = NumIterations − 1 Then
TrainingSet = Examples

Else
CurrentStrata = Iteration mod NumStrata
TrainingSet= examples from

Examples[CurrentStrata · StrataSize] to
Examples[(CurrentStrata + 1) · StrataSize]

EndIf
Run one iteration of the GA with TrainingSet
Iteration = Iteration + 1

EndWhile
Output : Best individual (set of rules) from GA population

Fig. 1. Pseudocode of the incremental learning with alternating strata (ILAS) scheme

instead of rule reward prediction. (2) GA selection is applied in the subsets of
currently active classifiers resulting in an implicit pressure towards more general
rules.

Due to the variable properties of the investigated datasets including real val-
ues, nominals, and binary features, we use a hybrid XCS/XCSR approach that
can handle any feature combination as done before in [5]. Additionally, we apply
tournament selection, which proved to result in more robust fitness pressure to-
ward accurate rules [8]. In the investigated problems, a reward of 1000 is provided
if the classification is correct, and 0 otherwise. 2

3 Experiments

3.1 Setup

In Table 1 we show the most important properties of the datasets we have
selected from the University of California at Irvine (UCI) repository [6]. The
selected datasets are:

2 XCS’s parameters are set as follows: N = 6400, r0 = 4(100), P# = 0.6, β = 0.2,
χ = 1.0 applying uniform crossover, μ = 0.04, m0 = 0.2, θGA = 48, τ = 0.4, ε0 = 1,
δ = 0.1, θdel = 50, GA Subsumption is applied with θsub = 50. Experiments are run
applying either 100,000 learning steps (averaging over 150 experiments) or 500,000
learning steps (averaging over 20 experiments).

Data Mining in Learning Classifier Systems: Comparing XCS with GAssist 285

– Annealing Data (ann)
– 1985 Auto Imports Database (aut)
– Balance Scale Weight & Distance (bal)
– Contraceptive Method Choice (cmc)
– Horse Colic (col)
– German Credit (cr-g)
– Glass Identification (gls)
– Cleveland Heart Disease (h-c)
– Hungarian Heart Disease (h-h)
– Johns Hopkins University Ionosphere database (ion)
– Sonar, Mines vs. Rocks database (son)
– Wisconsin Breast Cancer database (wbcd)
– Wisconsin Diagnostic Breast Cancer (wdbc)

The selection of datasets gives a representative overview over the phenomena we
were able to detect while comparing GAssist with XCS.

Table 1. The dataset properties indicate complexity, size, and data distributions in
the respective datasets. #Inst. = Number of Instances, #Attr. = Number of attributes,
#Real = Number of real-valued attributes, #Nom. = Number of nominal attributes,
#Cla. = Number of classes, Dev.C = Deviation of class distribution, Maj.C. = Per-
centage of instances belonging to the majority class, Min.C. = Percentage of instances
belonging to the minority class, MV I. = Percentage of instance with missing values,
MV A. = Number of attributes with missing values, MV V. = Percentage of values
(#instances · #attr) with missing values.

Dataset Properties
Name #Inst #Attr #Real #Nom #Cla Dev.C Maj.C Min.C MV I MV A MV V
ann 898 38 6 32 5 28.28 76.17 0.89 — — —
aut 205 25 15 10 6 10.25 32.68 1.46 22.44 7 1.11
bal 625 4 4 — 3 18.03 46.08 7.84 — — —
cmc 1473 9 2 7 3 8.26 42.70 22.61 — — —
col 368 22 7 15 2 13.04 63.04 36.96 98.10 21 22.77
cr-g 1000 20 8 12 2 20.00 70.00 30.00 — — —
gls 214 9 9 — 6 12.69 35.51 4.21 — — —
h-c1 303 13 6 7 2 4.46 54.46 45.54 2.31 2 0.17
h-h 294 13 6 7 2 13.95 63.95 36.05 99.66 9 19.00
ion 351 34 34 — 2 14.10 64.10 35.90 — — —
son 208 60 60 — 2 3.37 53.37 46.63 — — —

wbcd 699 9 9 — 2 15.52 65.52 34.48 2.29 1 0.23
wdbc 569 30 30 — 2 12.74 62.74 37.26 — — —

The test design for GAssist has two goals: Comparing the effect of using both
different number of iterations and different degrees of generalization pressure.
The latter goal is achieved by using the ILAS windowing scheme. However, our
goal is not run-time reduction, but rather the maximization of the generaliza-
tion pressure introduced by the ILAS scheme. Thus, we will increase the number
of iterations when using windowing proportional to the number of strata used.
This means having constant number of learning steps (using the Michigan-LCS

286 J. Bacardit and M.V. Butz

meaning of the term). We will also test another stratified setup using a number
of iterations that makes it equivalent in run-time compared to the non-windowed
setting (1 strata).

3.2 Results

Results of GAssist and XCS are shown in Table 2. The comparison is not meant
to determine which system is better in general but rather to show in which
problem types which system appears to have advantages. Our comparison starts
with a general data observation and then investigates separate datasets with
respect to specific phenomena.

A look at the overall performance shows that XCS and GAssist show com-
parative performance results indicating the general difficulty of the respective
datasets. XCS tends to learn the training data much more precisely which how-
ever is not necessarily advantageous for performance on the test data (using
stratified ten-fold cross-validation). The solution representation differs (as ex-
pected) very significantly between GAssist and XCS: The number of rules in the
best individual in GAssist is much smaller than the number of rules in XCS.
However, it should be noted that GAssist maintains 400 individuals and thus
the overall number of rules is actually similar to the number of rules in XCS.
While we did not make explicit speed comparisons it appears that XCS runs
take longer than GAssist’s. Again, this is expectable since XCS is an online
learner that learns from each problem instance separately and iteratively. Thus,
the number of necessary learning iterations are higher.

Taking a closer look at the particular datasets we see that in the anneal
(ann) dataset, performance of both systems reaches a similar level if XCS is run
long enough. As also indicated by XCS’s smaller population size in longer runs,
generalization appears important and requires sufficient learning time. General-
ization is even more important in the autos (aut) problem indicated by XCS’s
poor performance when starting specific and its improved test performance and
smaller population size in longer runs as well as in GAssist’s slight performance
improvement and rule number decrease when using three strata. Additionally,
the higher population size of XCS compared to the anneal problem indicates a
general higher complexity of the problem. Balance-scale (bal) is a typical prob-
lem which can be over-fitted easily: XCS’s performance is worse when starting
more specific and when performing longer runs. Note that the population size
of XCS actually increases when starting general and running more iterations—a
clear indication of over-fitting. GAssist’s performance points in the same direc-
tion in that generalization can slightly improve performance but longer runs are
not helpful. The cmc problem appears to be a tough problem in general. XCS
over-fits the data more than GAssist showing higher train performance but worse
test performance. In the colic (col) as well as in the heart-h (h-h) problem, per-
formance of XCS is significantly worse compared to GAssist. The major reason
for this appears to be the missing value policy. While in GAssist a missing value
is replaced by the majority value for the nominal case or by the average value
in the real-valued case, XCS assumes a match in the missing value case. The

Data Mining in Learning Classifier Systems: Comparing XCS with GAssist 287

Table 2. Train and test performance results of GAssist and XCS using 10-folded
cross-validation. Besides the performance results, we show the number of rules in the
best individual of GAssist and the number of (macro-)classifiers in XCS (at the end of
a run). The different GAssist runs distinguish a different application of strata (1 vs. 3
strata) as well as number of iterations (609, 1827, and 1447, respectively). In XCS, we
compare long (500,000 learning iterations) and short learning runs (100,000 learning
iterations) as well as a general (r0 = 100) and specific (r0 = 4) initialization of the
population.

GAssist XCS (500,000) XCS (100,000)
Data Res. 1 strata 3 s.(steps) 3 s.(time) r0 = 100 r0 = 4 r0 = 100 r0 = 4

ann
Train 97.4±2.2 97.8±3.3 97.9±2.5 99.6±.46 100±.18 94.3±2.0 98.9±.61
Test 97.0±2.6 97.4±3.5 97.5±2.8 98.4±1.6 98.6±1.5 91.2±2.7 91.7±2.9

#rules 6.9±.9 6.3±.7 6.3±.5 2507±232 3211±146 4440±87 5426±51

aut
Train 85.5±2.9 84.7±3.2 82.8±3.7 99.8±.23 99.6±.39 99.3±.67 99.4±.56
Test 67.5±9.8 68.8±9.7 67.5±9.5 71.5±9.5 68.8±12 64.7±9.6 13.4±6.9

#rules 12.8±2.7 7.8±1.1 7.8±1.0 3403±98.5 4679±217 4281±87.3 5426±36.9

bal
Train 87.7±.49 86.0±.69 85.9±.73 98.4±.72 98.6±.64 90.6±2.2 97.9±.86
Test 79.0±4.2 78.8±3.8 79.2±4.4 81.4±3.6 81.0±3.8 84.6±3.3 82.0±3.5

#rules 13.1±2.0 9.6±1.6 9.8±1.6 2061±73.2 2014±59.8 1611±169 2465±65.9

cmc
Train 59.8±.96 59.6±1.1 59.8±1.1 70.5±1.9 77.6±2.0 57.0±1.8 71.5±2.2
Test 54.8±4.2 54.6±4.0 54.9±4.1 53.6±4.0 52.9±4.7 50.1±4.7 53.6±3.6

#rules 7.7±1.4 9.3±3.0 9.1±2.9 3261±88.1 3210±84.3 3958±91.4 3929±64.7

col
Train 99.7±.34 99.6±.48 99.5±.50 94.6±1.2 95.5±1.3 91.7±1.6 95.0±1.1
Test 93.0±4.7 93.8±4.6 94.1±4.3 84.4±5.0 83.7±5.8 84.5±5.8 84.8±5.6

#rules 7.4±1.6 7.0±1.4 7.0±1.4 3102±156 3685±84.2 3612±169 4100±96.3

cr-g
Train 82.0±.76 83.7±.94 84.3±.83 98.2±1.2 99.6±.34 89.7±3.2 94.4±1.4
Test 72.3±3.6 72.0±4.2 72.2±3.8 70.2±3.6 72.3±4.2 71.4±3.9 72.5±3.1

#rules 6.8±1.5 11.3±3.0 13.1±2.1 2016±69.2 2623±75.4 3217±106 4401±104

gls
Train 82.1±1.8 80.4±1.9 79.9±1.8 98.8±.64 99.6±.67 89.7±2.8 96.6±1.4
Test 68.2±9.3 69.4±9.2 68.4±9.9 74.7±7.7 71.2±8.7 70.7±8.2 70.7±8.4

#rules 8.8±1.4 6.6±0.8 6.6±0.8 1808±86.5 2143±78.4 3093±134 3137±92.7

h-c1
Train 93.4±.82 91.4±.98 92.6±.86 99.9±.25 100±0.0 99.5±.46 100±0.0
Test 80.2±7.0 80.0±6.8 80.28±6.5 76.4±6.7 79.6±6.5 77.7±6.8 68.9±8.6

#rules 9.3±1.5 6.9±1.1 7.4±1.2 2043±69.2 2808±89.6 2854±99.6 2907±68.2

h-h
Train 99.7±.32 99.0±.48 99.0±.50 99.7±.44 100±0.0 95.4±2.2 100±0.0
Test 95.5±4.4 95.7±4.4 95.8±3.3 78.7±9.0 76.6±6.9 79.4±7.7 70.8±6.9

#rules 6.1±0.7 6.3±0.5 6.0±0.2 2072±103 2686±71.9 3091±136 2861±67.5

ion
Train 98.2±.46 96.8±.63 96.8±.59 99.9±.19 99.7±.41 99.7±.32 99.8±.34
Test 92.5±4.9 92.7±4.7 93.0±4.8 89.3±4.8 57.4±6.4 90.7±5.3 57.1±6.8

#rules 3.9±0.8 2.2±0.7 2.2±0.8 2935±93.5 5613±28.9 3479±97.6 5685±31.4

son
Train 97.0±1.0 96.6±1.2 96.3±1.2 100±0.0 100±0.0 99.9±.30 100±0.0
Test 74.4±8.9 76.8±9.0 77.5±9.2 78.4±7.4 82.6±8.3 77.3±8.1 81.6±7.9

#rules 8.3±1.4 6.8±1.1 6.9±1.1 4959±120 4168±142 5148±107 4473±89.8

wbcd
Train 99.1±.27 97.8±.50 97.9±.47 99.8±.24 100±0.0 97.7±.89 99.9±.13
Test 95.2±2.9 96.1±2.6 96.0±2.4 96.1±2.8 96.2±2.2 96.2±2.2 96.5±1.9

#rules 5.0±1.0 2.4±0.6 2.4±0.6 1562±96.8 2131±52.9 1108±144 3137±81.8

wdbc
Train 98.6±.5 97.6±.68 97.6±.78 100±.09 100±0.0 99.8±.22 99.9±.24
Test 94.1±3.0 94.2±2.9 94.1±2.8 96.1±2.5 96.7±2.2 95.9±2.6 92.9±3.3

#rules 6.0±1.3 3.8±0.7 3.9±0.9 4104±112 5051±50.9 4485±85.5 5551±87.7

latter strategy appears mediocre in the investigated data mining experiments
explaining XCS’s poor performance in these settings.

Performance in the credit-g problem (cr-g) indicates that over-fitting is un-
likely but in order to reach higher performance more specific initialization is
helpful. Again, XCS reaches a much higher train performance but test perfor-
mance is hardly influenced.

XCS’s behavior in the glass problem (gls) is similar to that of credit-g. How-
ever, generalization is more important as also indicated by the performance im-
provement in GAssist when using three strata. Similar to the autos problem, XCS

288 J. Bacardit and M.V. Butz

outperforms GAssist in the glass problem indicating higher problem complexity
which might partially stem from the large number of classes in the problem.

XCS’s performance in heart-c1 (h-c1) is actually very similar to the perfor-
mance in in heart-h (h-h) suggesting that besides the problem of missing values
in heart-h, XCS tends to strongly over-fit the training data. GAssist does not
suffer from this problem in these datasets.

Another interesting observation was made in the ionosphere problem (ion)
in which the automatic default rule detection mechanism in GAssist is actually
able to discover that the minority class results in a better problem performance.
XCS tends to over-fit as indicated by the poor performance and large population
size when starting too specific.

On the other hand, in the sonar problem (son) a start from the specific side
is actually beneficial for XCS suggesting small special-case niches which can be
separated only if the population is initialized more specific. The more generalized
representation of GAssist is not advantageous in this dataset.

In the Wisconsin breast-cancer dataset (wbcd) performance of both systems
is similar and the problem appears to be generally easy as indicated by the small
number of rules in both systems.

Finally, wdbc is another problem in which the complexity of the problem
makes it hard for GAssist to reach XCS’s performance level. XCS needs a large
number of classifiers to solve the problem but is able to evolve the appropriate
set. Slight generalizations are possible. GAssist on the other hand learns a very
general—but slightly over–general solution.

4 Summary and Conclusions

In sum, both LCS systems showed that they are suitable for data-mining ap-
plications developing very different problem solutions that nonetheless perform
similarly well on the test sets. Additionally, the comparison showed that regard-
less of offline (GAssist) or online (XCS) learning, LCSs are suitable data-miners.

The results allowed us to infer problem properties as well as problem diffi-
culties. We saw that the current policy of handling missing values in XCS can
affect performance negatively. Also, while GAssist has the tendency to ignore ad-
ditional problem complexity, XCS tends to over-fit the training data more often
(dependent on the nature of the data). Additionally, GAssist has slight problems
with handling many output classes as well as a huge search space suggesting the
addition of special covering operators that could ensure that each individual in
GAssist differentiates at least all classes in the problem at hand. On the other
hand, XCS’s generalization tendency needs to be revisited in the data-mining
domain. Especially in smaller datasets, XCS clearly tends to over-fit the data.
Due to the small size of the datasets, the natural generalization pressure due
to the niche reproduction mechanism hardly applies. Thus, additional pressure
towards syntactic generality becomes more important and may be reconsidered
in these problem domains.

Data Mining in Learning Classifier Systems: Comparing XCS with GAssist 289

The insights gained from our study prepare the systems for a more general
problem application suggesting initial testing with each learning approach for
suitability and appropriate initialization. XCS may need to be improved in terms
of generalization to avoid over-fitting. GAssist may be endowed with further cov-
ering mechanism to ensure that all problem classes are covered by each individual
and that it is able to detect additional small but significant problem subspaces.

Acknowledgments

The authors would like to thank Professor David E. Goldberg and the whole Illi-
GAL lab for their support and advise during this work. Support from the follow-
ing sources is acknowledged: the Spanish Research Agency (CICYT) under grant
numbers TIC2002-04160-C02-02 and TIC 2002-04036-C05-03; the Department
of Universities, Research and Information Society (DURSI) of the Autonomous
Government of Catalonia under grants 2002SGR 00155 and 2001FI 00514; the
German research foundation (DFG) under grant DFG HO1301/4-3; the Euro-
pean commission contract no. FP6-511931; the Air Force Office of Scientific
Research, Air Force Materiel Command, USAF, under grant F49620-03-1-0129;
the Computational Science and Engineering graduate option program (CSE) at
the University of Illinois at Urbana-Champaign.

References

1. J. Bacardit and J. M. Garrell. Analysis and improvements of the adaptive dis-
cretization intervals knowledge representation. In GECCO 2004: Proceedings of
the Genetic and Evolutionary Computation Conference, pages 726–738. Springer-
Verlag, LNCS 3103, 2004.

2. Jaume Bacardit. Pittsburgh Genetics-Based Machine Learning in the Data Min-
ing era: Representations, generalization, and run-time. PhD thesis, Ramon Llull
University, Barcelona, Catalonia, Spain, 2004.

3. Jaume Bacardit and Josep M. Garrell. Bloat control and generalization pressure
using the minimum description length principle for a pittsburgh approach learning
classifier system. In Proceedings of the 6th International Workshop on Learning
Classifier Systems. (in press), LNAI, Springer, 2003.

4. Jaume Bacardit and Josep M. Garrell. Incremental learning for pittsburgh ap-
proach classifier systems. In Proceedings of the “Segundo Congreso Espaol de
Metaheuŕısticas, Algoritmos Evolutivos y Bioinspirados.”, pages 303–311, 2003.

5. Ester Bernadó, Xavier Llorà, and Josep M. Garrell. XCS and GALE: a compar-
ative study of two learning classifier systems with six other learning algorithms
on classification tasks. In Fourth International Workshop on Learning Classifier
Systems - IWLCS-2001, pages 337–341, 2001.

6. C. Blake, E. Keogh, and C. Merz. UCI repository of machine learning databases,
1998. (www.ics.uci.edu/mlearn/MLRepository.html).

7. M. V. Butz. Rule-Based Evolutionary Online Learning Systems: A Principled Ap-
proach to LCS Analysis and Design. Studies in Fuzziness and Soft Computing.
Springer-Verlag, Berlin Heidelberg, 2005.

290 J. Bacardit and M.V. Butz

8. Martin V. Butz, Kumara Sastry, and David E. Goldberg. Tournament selection in
XCS. Proceedings of the Fifth Genetic and Evolutionary Computation Conference
(GECCO-2003), pages 1857–1869, 2003.

9. Kenneth A. DeJong, William M. Spears, and Diana F. Gordon. Using genetic
algorithms for concept learning. Machine Learning, 13(2/3):161–188, 1993.

10. Xavier Llorà and Josep M. Garrell. Knowledge-independent data mining with fine-
grained parallel evolutionary algorithms. In Proceedings of the Third Genetic and
Evolutionary Computation Conference, pages 461–468. Morgan Kaufmann, 2001.

11. Stewart W. Wilson. Classifier fitness based on accuracy. Evolutionary Computa-
tion, 3(2):149–175, 1995.

12. Stewart W. Wilson. Get real! XCS with continuous-valued inputs. In L. Booker,
Stephanie Forrest, M. Mitchell, and Rick L. Riolo, editors, Festschrift in Honor of
John H. Holland, pages 111–121. Center for the Study of Complex Systems, 1999.

	Introduction
	Framework
	GAssist
	XCS

	Experiments
	Setup
	Results

	Summary and Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

