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Abstract 

A new approach to anticipations is proposed – anticipation by 
analogy. Firstly, the role of selective attention was explored 
both with simulation data and psychological experiment. 
After that, the AMBR model for analogy-making has been 
extended with a simple anticipatory mechanism and is 
demonstrated how top-down perception and analogical 
transfer can both be based on one and the same anticipatory 
mechanism. Finally, attention and action mechanisms were 
added to the model and AMBR was implemented in a real 
robot that behaves in a natural environment. 

The Importance of Anticipations 
Humans are anticipatory agents. They always have 
expectations about the world they live in (sometimes 
correct, sometimes wrong). Our everyday behavior is based 
on the implicit employment of predictive models. If, for 
example, we are looking for a certain book in an unknown 
room, we try to imagine where it could possibly be and then 
we go to look at this place. This is an example of 
anticipatory behavior as opposed to simple reactive behavior 
when we first see the object and then move towards it. 

There are few attempts to implement anticipatory behavior 
in computational models or in real robots. Typically, the 
researchers from the neural network approach use learning 
as a main mechanism for generating implicit or explicit 
models of the environment. The learned network weights 
represent these models and the result could be considered an 
anticipatory system. Examples for this type of anticipations 
are the ALVIN model (Pomerleau, 1989), which learns not 
only to respond to the environment but also to predict the 
observations to be seen in the next step and the Anticipatory 
Learning Classifier Systems (Stolzmann, 1998, Butz at al, 
2002), which combine online reinforcement learning and 
model learning methods and can learn several reward maps. 
The combination of online generalizing model learning and 
reinforcement learning allows the investigation of diverse 
anticipatory mechanisms including multi-objective goals 
integrating different motivations.  

Another approach towards building anticipatory capacities 
is based on the DYNA-PI systems (Sutton, 1990). These 
systems are based on reinforcement learning systems that 
plan on the basis of a model of the world. Recently these 
models have been used to implement a neural network 
planner (Baldassarre, 2002) that is capable of finding 
efficient start – goal paths, and deciding to re-plan if 

“unexpected” states are encountered. Planning iteratively 
generates “chains of predictions” starting from the current 
state and using the model of the environment. This model is 
a neural network trained to predict the next input when an 
action is executed. 

Anticipation by Analogy 
The learning techniques based on generalization described 
above are based on the assumption that there is regularity in 
the input-output coupling. However, in some tasks, for 
example when searching for a hidden object, there will be 
no regularity. This paper describes an alternative approach 
towards anticipation based on analogical reasoning. The 
main idea is to generate predictions by analogy with a single 
episode from the past experience. We modeled anticipatory 
mechanisms and we tested them with simulations in 
environment that consists of rooms; some geometrical 
objects – cubes, pyramids, etc; one robot; and a bone-toy, 
which can be hidden behind a certain object. We used a 
simulated (Webots software) and real - Sony AIBO robot 
(ERS-7). The simplest scenarios we are working on 
involves the robot searching for a bone hidden somewhere 
behind some object in one of the rooms of a house. In some 
cases two episodes might be very close analogies, e.g. the 
bone is hidden behind the same object in another room, or 
behind the same “pattern of objects”, however, in other 
cases the robot may need to build a more abstract analogy, 
e.g. the bone was behind the object with unique color, but 
now all objects have the same color and therefore the object 
might be behind the object with unique form. 

Analogy-making is a very basic human ability that allows 
a novel situation to be seen as another already known one 
(Hofstadter, 1995). There are a number of cognitive models 
developed of this process or various parts of it. One of the 
first such models is the SMT developed by Dedre Gentner 
and her colleagues (Gentner, 1983). SMT assumes that 
analogy is transfer of a system of relations from one 
situation to another. It assumes that attributes are not 
important and thus are ignored in mapping. It also assumes 
that the two situations should share the same relations. Thus 
the above case of analogy between unique color and unique 
form relations is not possible in SMT unless a re-
representation is performed (Yan, Forbus and Gentner, 
2003), however, it is not clear how such a re-representation 
could be computed in this particular case. Other models of 
analogy-making such as ACME (Holyoak, Thagard, 1989), 
LISA (Hummel, Holyoak, 1997), and AMBR (Kokinov, 



1994a) allow for mapping of relations with different names. 
Comparing these models we decided to use AMBR since 
ACME is psychologically unrealistic for making all possible 
pairing of possible correspondences and is based on a fixed 
thesaurus for finding synonyms, and LISA is still not 
capable of comparing complex enough structures that will 
be needed in the real-world applications of the robot 
scenarios. AMBR has also the advantage of integrating 
mapping and retrieval processes of analogy-making. 
However, none of these models has ever been used for 
anticipation; neither has been applied in robot scenarios.  

Implementing Anticipations in the AMBR Model of 
Analogy-Making 
AMBR is a decentralized model in which computations 
emerge from the interactions among numerous micro-agents 
(Kokinov, 1994a, 1994b, Kokinov & Petrov, 2001). All the 
micro-agents run in parallel and interact with each other and 
the macro-behavior of the system emerges from the local 
interactions and micro-behavior of the individual agents. 
These micro-agents run at individual speed each and this 
speed is dynamically computed depending on the relevance 
of this micro-agent to the context (Petrov & Kokinov, 1999, 
Kokinov & Petrov, 2001). Each of these micro-agents is 
hybrid – it has a symbolic part that represents the specific 
piece of knowledge that the agent is responsible for, and it 
has a connectionist part that computes the activation level 
which reflects the relevance of the agent to the context. 

Thus in AMBR there are no separate steps in the analogy-
making process: retrieval and mapping overlap and interact 
with each other. This allows for the structural constraint, 
which is important for the mapping process, to influence 
also on the retrieval process and thus it is possible remote 
and abstract analogies to be constructed. 

AMBR does not separate semantic from episodic memory. 
Instead, the memory episodes are represented with a 
coalition of interconnected instance-agents that point to their 
respective concept-agents. The representation of the target 
situation and the representation of the environment serve as 
sources of activation that spreads to the relevant concepts, 
their super-classes and close associations, and then back to 
some instances from memory situations. Thus the Working 
Memory of the model is not a separate part but is defined as 
the part of the Long-Term Memory that consists of relevant 
enough items. 

Each instance-agent that enters in the Working Memory 
emits a marker that spreads up-wards in the conceptual 
class-hierarchy. When two markers meet somewhere a 
hypothesis for correspondence between their origins is 
created. It represents the fact that there is something in 
common between the respective marker-origins, namely, 
they are both instances of a same class. Several mechanisms 
for structural correspondence create new hypotheses on the 
basis of existing ones – if two relations are analogous, their 
respective arguments should also be analogous; if two 
instances are analogous, their respective concepts should be 
analogous, etc. 

Thus, gradually, many hypotheses for correspondence 
emerge and form a constraint satisfaction network that is 

interconnected with the main one. The final answer of the 
system emerges from the relaxation of this constraint 
satisfaction network.   

Simulation Results 
In the first series of simulations we used only the simulated 
version of the robot and the environment, thus excluding 
perception and exploring only the role of selective attention. 
The robot faces several objects in the room and has to build 
their representation in its mind. Then the task of the robot is 
to predict behind which object would the bone be and then 
finally to go to the chosen object and check behind it. 

Thus there is a representation building part of the model, 
which target representation is then used for recalling an old 
episode which could be used as a base for analogy, a 
mapping between the base and the target is built, and the 
place of the hidden object in this old episode is used for 
predicting the place of the hidden bone in the current 
situation. Finally, a command to go to the chosen object is 
send. It is important to emphasize that all these processes 
emerge from the local interactions of the micro-agents, i.e. 
there is no central mechanism that calculates the mapping or 
retrieves the best matching base from memory. 

In the simulations described here the AIBO robot had four 
specific past episodes encoded in its memory, presented in 
Figure 1. In all four cases the robot saw three balls and the 
bone was behind one of them. The episodes vary in terms of 
the colors of the balls involved and the position of the bone. 

 
Episode A Episode B Episode C Episode D 

Figure 1:  Old episodes in the memory of the robot 
(different colors are represented with different textures). 

The robot was then confronted with eight different new 
situations in which it had to predict where the bone might be 
and to go and check whether the prediction was correct 
(Figure 2). The situations differ in terms of colors and 
shapes of the objects involved. 

 

1 2 3 4 5 6 7 8 

Figure 2:  New tasks that the robot faces. 

In Figure 3 one can see the representation of the target 
situations that is extracted from the description of the 
simulated environment. Representation building for 
perceived real environment is described in the next section. 



For the first series of simulations, however, the 
representation involves relations known to the robot such as 
color-of (object-1-sit001, red1), same-color (object-1-
sit001, object-3-sit001), unique-color (object-2-sit001), 
right-of (object-2-sit001, object-1-sit001), instance-of 
(object-1-sit001, cube), etc. (see Figure 3 for some 
examples). The relations are in turn interconnected in a 
semantic network. For example, same-color and same-
form are both sub-classes of the higher-order relation same. 

In the simulations described above the attention of the 
robot was simulated by connecting only some of these 
descriptions to the input list which results that even though 
all relations, properties, and objects will be present in the 
Working Memory (WM) of the robot, only some of them 
will receive external activation and thus will be considered 
as more relevant. Thus different simulations with the same 
situation, but focusing the attention of the robot towards 
different aspects of the given situation, could result in 
different outcomes.    

Figure 3:  Representation of the target situations 1 and 2. 

In each case there could be various solutions: different 
analogical bases could be used on different grounds and in 
some cases for the same base several different mappings 
could be established that will lead to different predictions 
(See Fugure 4 and Figure 5 for the specific mappings 
established and the predictions made). 

 

    
(a) (b) (c) (d) 

Figure 4:  Examples of mappings established with 
changing the attention from form (a) and (b) to color (c) and 

(d).  

In Figure 4 the mappings that the system has established for 
several situations are depicted: (a) Mapping established 
between target situation 1 and base D: unique colour goes to 
unique colour and the bone is predicted to be behind it. (b) 
and (c) Two different mappings established between 
situation 2 and base D: in (b) the focus of attention has been 
on the form of the objects and the mapping goes from 
unique form in the target to unique colour in the base, same 
form in the target to same colour in the base and the bone is 
predicted to be behind the object with unique form (namely 
behind the ball), in (c) the focus of attention is on the 
colours and therefore any mapping between the objects is 
possible, in this particular case the bone is predicted to be 
behind the right-most object. Finally, (d) presents the 
mapping between target situation 3 and base B where the 
focus of attention is on the colours: three objects of the same 
colour in both cases, independently of the difference in the 
form; the bone is predicted to be behind the middle object. 
 

    
(a) (b) (c) (d) 

Figure 5:  Examples of mappings based on the superficial 
color relations  

The mappings that the system has established for several 
other target situations are shown on Figure.5. These are 
more superficial analogies where the color is dominating 
and where it is mapped on the same color in the old episode, 
i.e. if the bone was behind the red ball before then the robot 
would predict in these cases that the bone will be again 
behind the red object. 

By varying the focus of attention on various aspects of the 
target situation one can get various results, thus figure 4b 
and 4c show two different mappings and therefore two 
different predictions will be generated by the system: 4b 
makes more sense, however, also humans do not produce 
always this specific mapping.  

Evidently, situations 5, 6, 7, 8 (Figure.2) are more straight-
forward – they require a rather superficial mapping of the 
specific colors. Situations 1, 2, 3, 4 are more interesting 
because they invite less obvious mappings. Thus in Figure 
4a the mapping is between two objects having same color in 
the target and two objects (although different in form) 
having the same color in the base, although the colors 
themselves are different (red goes to black, and yellow to 
white). The most interesting case is 4b where a rather 
abstract mapping has been established: the two objects in 
the target which have the same form (cube) are mapped onto 

Unique form 

Same color 

Sit 002 

Same 
form 

Unique color 

Right-of Right-of 

Same color 

Sit 001 



the two objects in the base with the same color. Thus same-
form goes to same-color as well as unique-form goes to 
unique-color. This mapping would be impossible with many 
other models of analogy-making (SMT maps only identical 
relations, ACME and LISA could not do it for different 
reasons – the pressure for mapping same-color onto same-
color will be high). In AMBR this is possible because of the 
general knowledge that same-color and same-form are both 
special cases of the “sameness” relation and the markers 
starting from both episodes will cross in “same”. In 
addition, focusing the attention on same-form would greatly 
help to find this mapping as demonstrated in the simulation. 

Comparison with Human Data 
After running the first series of simulations several times 
varying only the focus of attention to see whether the 
mapping changes; we conducted a psychological 
experiment. We showed the bases to the participants, 
changing the AIBO robot and the bone with a cover story 
about a child who has lost its bear-toy. We asked the 
participants to predict where the bear-toy would be in the 
given new situation.  

The data from the human experiment are given in Figure 
6a. As one can see there is a variety of answers for almost 
each target situation. Still there are some dominating 
responses. In order to be able to test the robot’s behavior 
against the human data, 50 different knowledge bases have 
been created by a random generator that varies the weights 
of the links between the concepts and instances in the 
model. After that the simulation has been run with each of 
these knowledge bases in the “mind” of the robot. Figure 6b 
reflects the results. They show that the model has a behavior 
which is quite close to that of the participating human 
subjects in terms of the dominating response. The only 
major difference is in situation 2 where human subjects are 
“smarter” than AMBR: they choose an analogy with 
situation D (same-form goes onto same-color) much more 
often than AMBR. Still AMBR has produced this result in 
25% of the cases. This means that AMBR is in principle 
able to produce this result, but it would requite some tuning 
of the model in order to obtain exactly the same proportion 
of such responses. 

Using Anticipation Mechanisms for Modeling 
Top-Down Perception and Analogical Transfer 
The main disadvantage of the version described above is 
that AMBR lacked completely any perceptive mechanisms 
except for manual coding of a presented situation (target) 
and additionally perceived objects. In order to overcome this 
limitation we developed new mechanisms modeling top-
down perception and attention. In addition, we used some 
modules of the IKAROS platform (http://www.ikaros-
project.org/) to manage with the difficult task of bottom-up 
visual perception and object recognition. Thus we enriched 
our model AMBR with perception abilities. It gives us the 
possibility to extract the representations from real physical 
environment and not coding them manually inside the 
model. Thus, we tested AMBR with a real AIBO robot in a 
real environment.  The newly built mechanism for 

anticipation-creation is described briefly in the next 
subsections, as well as its usage both for top-down 
perception and for analogical transfer. 

 
 

 
(a) Human data 

 
(b) AMBR simulation data 

Figure 6:  Comparing human and simulation data: which 
base has been used for analogy with each target situation 

and how many times. 

Top-Down Perception as Anticipation 
At the beginning, the robot is looking at a scene. In order for 
the model to “perceive” the scene, or parts of it, the scene 
must be represented as an episode, composed out of several 
agents standing for objects or relations, attached to the input 
or goal nodes of the architecture. It is assumed that the 
construction of such a representation is initially very poor. 
Usually, symbolic representations of only the objects from 
the scene without any descriptions are attached to the input 
of the model (for example, cube-1, cube-2, and cube-3). 
The representation of the goal is attached on the goal node 
(usually find-t, Aibo-t, and bone-t). During the run of the 
system, via the mechanisms of analogical mapping some 
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initial correspondence hypotheses between the input (target) 
elements and some elements of previously memorized 
episodes (bases) emerge. The connected elements from the 
bases activate the relations in which they are included. If it 
happens all arguments of a certain relation from a base 
episode to be mapped to elements from the target, than the 
respective relation is transferred from the base to the target.  
However, the new relation is considered as anticipation. 
Later on, the perceptual system should check whether it is 
really present in the environment or not. This dynamic 
perceptual mechanism creates anticipations about the 
existence of such relations between the corresponding 
objects in the scene. For example, suppose that cube-T from 
the scene representation has been mapped onto cube-11 in a 
certain memorized situation. The activation retrieval 
mechanism adds to working memory some additional 
knowledge about cube-11 – e.g. that it is yellow and is 
positioned to the left of cube-22, etc. The same relations 
become anticipated in the scene situation, i.e. the system 
anticipates that cube-T is may be also yellow and could be 
to the left of the element, which corresponds to cube-22 (if 
any), etc. Thus, various anticipation-agents emerge during 
the run of the system. 

Attention 
The attention mechanism deals with the anticipations 
generated by the dynamic perceptual mechanism, described 
above. With a pre-specified frequency, the attention 
mechanism chooses the most active anticipation-agents and 
asks the low-level perceptual system to check whether the 
anticipation is correct (e.g. corresponds to an actual relation 
between the objects in the scene). The low-level perceptual 
system (based on IKAROS) receives requests from AMBR 
and simply returns an answer based on the available 
information from the scene. This information is received 
from the IKAROS system which extracts symbolic visual 
information from the real environment. There are three 
possible answers: ‘Yes’, ‘No’, or ‘Unknown’. The answer 
‘Unknown’ is returned very often because typically AMBR 
asks for a variety of relations. In addition to colors (‘color-
of’ relations), spatial relations, positions, etc., it generates 
also anticipations like “the bone is behind ‘object-1’”, or 
“if I move to ‘object-3’, I will find the bone”. Those 
relations play a very important role for the next mechanism 
– the transfer of the solution (i.e. making a prediction on 
which an action will be based) – as explained below. 
After receiving the answers, AMBR manipulates the 
respective agent. If the answer is ‘Yes’, it transforms the 
anticipation-agent into instance-agent (i.e. token). In this 
way the representation of the scene is successfully extended 
with a new element, for which the system tries to establish 
correspondences with memorized episodes elements. If the 
answer is ‘No’, AMBR removes the respective anticipation-
agent together with some connected to it additional 
anticipations. Finally, if the answer is ‘Unknown’, the 
respective agent remains anticipation-agent but behaves just 
like a real instance, waiting to be rejected or accepted in the 
future. In other words, the system behaves in the same way 
if the respective anticipation is true. However, the 
perceptual system or the transfer mechanism (see below) 

can remove this anticipation. In this way AMBR gradually 
builds the representation of the scene. 

Transfer of the Solution 
The representation of the scene emerges dynamically, based 
on top-down processes of analogical mapping and 
associative retrieval and on the visual information from the 
environment. The system creates many hypotheses for 
correspondence that self-organize in a constraint-satisfaction 
network. Some hypotheses become winners as a result of 
the relaxation of that network and in this moment the next 
mechanism – the transfer of the solution is triggered. In fact, 
the transfer mechanism does not create the agents, which 
represent the solution. Actually, the perceptual mechanism 
has already transferred many possible relations but now the 
task is to remove most of them and to choose the best 
solution. For example, suppose the target situation consists 
of three red cylinders and let the task of the AIBO robot is 
to find the bone. Because of various mappings with different 
past situations the anticipation mechanism would create 
many anticipation-agents with the form: “The bone is 
behind the left cylinder” because in a certain old situation 
A the bone was behind the left cube and now the left 
cylinder and the left cube are analogically paired. Because 
of the analogy with another situation B, for example, the 
anticipation that “the bone is behind the middle cylinder” 
could be independently created. For a third reason, the right 
cylinder may also be considered as a candidate for searching 
the bone. Thus many alternative anticipation-agents co-
exist. When some hypotheses win, it is time to disentangle 
the situation. 

The winner-hypotheses take care to propagate their 
winning status to the consistent anticipation-agents. In 
addition, the inconsistent ones are removed. In the example 
above, suppose that situation A happens to be the best 
candidate for analogy. Thus, the hypothesis left-cylinder<--
>left-cube would become a winner. The relation ‘behind’ 
from situation A would receive this information and take 
care to remove the anticipations that the bone can be behind 
the middle or behind the right cylinder.  

As a final result of the transfer mechanism, some complex 
causal anticipation-relations like “if I move to the object-3, 
this will cause finding the bone” become connected to the 
respective cause-relations in the bases via winner-
hypotheses. 

Action Executing 
In order to finish the whole cycle from perception to action 
and to test all mechanisms with a real robot, sending an 
action command has been modeled. The cause-relations that 
are close to the GOAL node trigger it. The node GOAL 
sends a special message to the agents that are attached to it, 
which is in turn propagated to all cause-relations. Thus, at 
certain moment, the established cause-relation “if I move to 
object-3, this will cause finding the bone” will receive 
such a message and when one of its hypotheses becomes 
winner, it will search in its antecedents for an action-agents. 
The final step is to request the respective action and this is 
done by sending a message to the action execution module 



of the system. This module navigates the robot to the target 
object. The information for his/her position is updated from 
the IKAROS system. After arriving at the requested position 
the robot uncovers the object and takes his/her bone if it is 
there or stops. 

Conclusions 
This paper presents a new approach – we suggested that the 
analogy with previously experienced situations may be used 
for anticipation. Our attempt was to model these analogy-
based anticipations with the AMBR model and to extend it 
with top-down perceptual and analogical transfer 
mechanisms. Finally, we used real AIBO robot to test the 
model in a natural environment. 

Firstly, we explored the role of selective attention in the 
simulation and in a psychological experiment.  After that, 
we implemented a simple anticipation mechanism in 
AMBR, namely transferring a relation from a memorized 
episode to the current situation if all arguments of the 
respective relation have been mapped. Thus, we actually 
extended AMBR both with top-down perceptual and with 
analogical transfer mechanisms, thus showing that may be 
one and the same basic mechanism underlie these seeming 
unrelated phenomena. 

Finally, we added additional attention and action 
mechanisms in AMBR, and implemented it into a real 
AIBO robot that behaves in a natural environment. 

However, this is just a small step in a larger project. We 
used the IKAROS system for bottom-up perception and for 
recognition of the objects. Further investigation and 
modeling of these processes should be made in order to 
achieve integrated active vision.  

Now all the visual information for the environment is 
received from a global camera above the scene. The 
attention mechanism should be connected with the robot 
camera and particularly, with its gaze. Thus, both the 
salience maps from the environment and the top-down 
reasoning will influence the head-movement of the robot, 
and in turn, the order of checking of various anticipations. 

This paper is an attempt to integrate high-level analogical 
reasoning with active attention and vision in a single model, 
based on a few main principles and in addition, to test this 
model with a robot in a real environment.  
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