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Abstract

Infants gradually learn to predict the motion of
moving targets and change from a strategy that
mainly depends on saccades to one that depends on
anticipatory control of smooth pursuit. A model is
described that combines three types of mechanisms
for gaze control that develops in a way similar to
infants. Initially, gaze control is purely reactive, but
as the anticipatory models become more accurate,
the gain of the pursuit will increase and lead to a
larger fraction of smooth eye movements. Finally,
a third system learns to predict changes in target
motion which will lead to fast retuning of the pa-
rameters in the anticipatory model.

1 Introduction

To engage in a continuous interaction with a dy-
namic world, it is essential to anticipate how the
world will change to select and control actions de-
pending, not on the past, but on the future. One of
the earliest interactions to develop in infants is the
ability to look at moving objects. Smooth pursuit
occurs when the eyes track a moving target with
a continuous motion, which ideally is centered di-
rectly on the target and makes the image of the tar-
get stationary on the retina. Smooth pursuit is com-
plicated by the fact that the initial visual processing
in the human brain delays the stimulus by approx-
imately 100 ms before it reaches the visual cortex
(Wells & Barnes, 1998, Fukushima et al., 2002). If
smooth pursuit movements were solely controlled
by the position error on the retina, the eye would
constantly lag a moving target.

To overcome this problem, the brain makes use
of prediction (Deno et al., 1995, Mehta & Schaal,
2002, Poliakoff, Collins & Barnes, 2004). Because
eye control is based on predicted target location
rather than the actual target position which is
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not yet known, it is possible for the gaze to over-
shoot when the target disappears unexpectedly or
changes direction. This does not happen when the
disappearance of the target is controlled by the
subject, for example by a button (Stork, Neggers
& Müsseler, 2002). In this case, the gaze veloc-
ity slows down before the target disappears which
shows that their expectations control the velocity
of the smooth pursuit. Smooth pursuit movements
cannot normally be generated without a moving
stimulus, except that it can appear a short mo-
ment before a target is expected to appear (Po-
liakoff, Collins & Barnes, 2005, Wells & Barnes,
1998). Subjects can learn to anticipate the velocity
a target will have when it appears, and in the case of
several targets, subjects can produce predictive eye
movements of approariate velocity when one of the
targets is cued (Poliakoff, Collins & Barnes, 2004).

Infants as young as one month can exhibit
smooth pursuit, but only at the speed of 10 de-
grees/s or less and with low gain (Roucoux et al.,
1983). A three month old infant does not follow
if a target abruptly changes its direction of move-
ment. Instead it continues in the original direction
for a quarter of a second before adjusting its eye
movements (Aguiar & Bailargeon, 1999). However,
at five months of age, the infant learns the abrupt
turn and its lag is reduced. The ability to smoothly
track a target thus develops very rapidly, and at five
month of age this ability approaches that of adults
(von Hofsten & Rosander 1997).

Before the infant can use smooth pursuit, it fol-
lows moving targets using small saccade movements
that rapidly move the gaze from one position to an-
other (Dayton & Jones, 1964). As the smooth pur-
suit system develops, these saccades become less
frequent, but are still used to catch up if the lag
becomes too large.

Of particular interest is how infants behave when
the target disappears, for example behind an oc-
cluder. According to Piaget (1937), the child is able
to predict that a train that disappears at one end
of a tunnel will appear at the other end. This can
either be explained by a tracking mechanism that
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continues to track the motion of the train when it
has disappeared, or as form of event learning where
the child learns to predict that the disappearing
train predicts the subsequent reappearance of the
train. There exits evidence for both types of mech-
anisms. For example, Wentworth and Haith (1998)
found that three-month-old infants could learn spa-
tiotemporal expectations. Other researchers have
mainly studied the ability of infants to smoothly
track a moving target using predictive models of the
motion (von Hofsten & Rosander & 1997, Rosander
& von Hofsten, 2004).

Contrary to earlier speculations, infants do not
continue to track an occluded objects with smooth
pursuit. Instead the tracking stops and one or two
saccades are made to the other side of the occluder
(Rosander & von Hofsten, 2004). These saccades
are made to anticipate when the object reappear –
not when it disappears. Infants that are 7-9 weeks
old continue to look at the edge of the occluder
where the object disappears for 1 second before
finding it again (Rosander & von Hofsten, 2004).
Infants that are 12 weeks old move their eyes as
soon as the target becomes visible again. This de-
lay decreases with each trial which indicates that
the infant starts to anticipate where the objects will
reappear. Some of these effects have been seen in
younger infant as well, but they have not been re-
liable. It is possible that the younger infant would
have performed better if the object was made invis-
ible instead of occluded since the occluder distracts
attention from the target (Jonsson & von Hofsten
2003).

Given these interesting properties, the control of
gaze is an ideal domain to study the mechanisms
behind anticipation, the learning of dynamic inter-
action and event learning. In the following sections,
we present a computational model of how gaze con-
trol develops and how mechanisms for dynamic con-
trol interacts with mechanisms for event learning.

2 Coping with Delayed Feed-

back

What are the requirements of a system that needs
to predict the motion of a visual target? Consider
a system that attempts to predict the position of a
target object based on a sequence of its previous po-
sitions. Such a system should learn a function from
a number of observed positions p(t−n), . . . , p(t−1)
to the estimated position p̂(t) at time t. Any of a
number of learning algorithms could learn such a
function by minimizing the prediction error e(t) =
p(t)− p̂(t). The learned function constitutes an an-
ticipatory model of the target motion.

We now add the constraint that the perception of
the target, including its localization, takes τ time
units. In this case the problem translates to esti-
mating p̂(t) from p(t − n), . . . , p(t − τ), since the
rest of the sequence is not yet available. In addi-
tion, this means that the system only has access
to the prediction error e(t) after τ additional time
steps, that is, learning has to be set off until the
error can be calculated and the estimate of p̂(t) has
to be remembered until time t + τ when the actual
target location p(t) becomes available.

The important point here is that a system of
this kind will never have access to the current po-
sition of the target until after a delay. Any action
that is directed toward the current target position
will thus have to depend on the predicted location
rather than the actual one. This is further compli-
cated by the fact that any action directed toward
the predicted location will also take some time to
execute. For example, if an action is performed with
constant reaction time ρ, an action directed at p̂(t)
at time t will miss the target, since once the action
has been performed the target will be at position
p(t + ρ). Consequently, the system needs to antici-
pate the target position p̂(t + ρ) already at time t

when the action is initiated.
In summary, the system needs to keep track

of the target at three different times. The first
consists of the currently observed set of positions
p(t − n), . . . , p(t − τ) that can be called the per-

ceived now. The second is the anticipated now, that
is, p̂(t). This is the actual position where the target
currently is, but this is not yet accessible. Finally,
any action must be controlled by the anticipated

future, that is, p̂(t + ρ).
Although this looks like a very complicated way

to handle time, unless the delays τ and ρ are neg-
ligible, the use of some form of prediction is un-
avoidable. The delays in the human brain are long
enough to necessitate anticipatory models and this
has important consequences for how we learn to
pursue a moving object with our eyes.

3 A Model of Visual Control

and Development

There are three ways in which the direction of gaze
can be controlled that can be considered three dif-
ferent pathways from sensation to motor control.
These three pathways are summarized in the com-
putational model shown in Fig. 1.

The reactive saccade pathway generates saccades
based on the location of salient features in the im-
age that are outside the focal region. The anticipa-
tory pursuit pathway consists of a target detections
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system together with a predictive model and a con-
trol system that is used to generate smooth pursuit
movements. Finally, the third pathway consists of
an event predictor that can learn arbitrary relations
between visual events.

The selection between the different pathways is
similar to an earlier design that has been imple-
mented in a stereo vision head (Balkenius & Kopp,
1996). The visual field is divided into three regions
and different control strategies are used depending
on in which region the target is located. In the focal
region, gaze is controlled by the pursuit pathway
by a controller that handles both smooth pursuit
and fixation, which is in line with evidence that
the same mechanism is used for these two behav-
iors (Smeets & Bekkering, 2000). When the target
is in the intermediate and peripheral regions, dif-
ferent types of saccades are generated instead by
the saccade pathway. When no target is visible or
when it is expected to change its movement, the
event prediction pathway can move the gaze to a
location where a target may appear or change the
parameters of the target predictor to anticipate the
changed movement.

The direction of gaze is updated according to
g(t+1) = g(t)+v(t)+s(t)+a(t)+n(t), where v(t)
is the velocity from the pursuit pathway, s(t) is the
bursts from the saccade generator, a(t) is a saccade
generated by the event predictor pathway, and n(t)
is a noise term. For the sake of presentation, we will
assume in the following that the model only needs
to direct the gaze to the correct horizontal position
of the target. All values can thus be assumed to be
scalars.

3.1 The Reactive Saccade Pathway

The first pathway is controlled by a pre-attentive
system that selects salient features or stimuli in
the image and directs attention to them. This sys-
tem is based on the model of pre-attentive pro-
cessing introduced by Itti, Koch & Neibur (1998)
and produces exogenous saccades. This part of the
model consists of a number of simple filtering op-
erations including the detection of oriented con-
trast, curvature, foreground elements, and motion
(Balkenius, Eriksson & Åström, 2004). The result-
ing pre-attentive maps are added together to form
a salience map from with the next target location
is selected. The probability of selecting a region in
the image is proportional to the salience of that re-
gion which is given by the salience map. In Fig. 1,
the visual signal through the reactive saccade path-
way is represented by the position of the target in
retinal coordinates r(t).

When the selected target location is sufficiently

far away from the center of the eye, a saccade to-
ward the target is generated by the saccade gener-
ator. In the intermediate region around the center,
catch-up saccades are generated to tracked objects
(cf. Smeets & Bekkering, 2000) and in the periph-

eral region, an orienting system is used to roughly
direct attention in the direction of any transient
event (Balkenius & Kopp, 1996).

When gaze is controlled solely by the saccade
pathway, small saccades will be produced that track
any salient stimulus in view. This behavior parallels
that of the new-born infant for all but slowly mov-
ing targets (Lengyel, Weinacht, Charlier, Gottlob,
1998).

3.2 The Pursuit Pathway

The pursuit pathway uses a control system for tar-
get tracking similar to that of Shibata et al. (2001),
where a forward-model is used to predict target ve-
locity based on image-slip and gaze (Fukushima et
al., 2002). Unlike the model of Shibata et al. (2001),
all calculations are made with positions rather than
velocities and velocities are only used implicitly as
differences between locations. In this system, the
prediction of target motion is separate from the mo-
tor control of the eyes, which seems to be the case
also in the human gaze-control system. The predic-
tion is made in world-centric coordinates while mo-
tor control is made in ego-centric coodinates. This
is very important for the success of the system since
learning of target motions should not interfere with
the learning of eye control. This also makes target
prediction immune to movements of the body.

The pursuit pathway consist of two main parts
(see Fig. 1). One is used for target prediction and
the second is used to control the smooth movements
of the eye. There are also two modules that per-
forms transformations between eye coordinates g(t)
and world coordinates p(t). In the present model,
these transformations are made by simply adding
or subtracting the horizontal position for the eye
from the target location in the eye. In a more gen-
eral model, these transformations should allow any
three-dimensional transformation. There is also a
delay in the pathway from the eye position to the
target predictor that matches that of the delay in
the visual processing. Because of the delay within
the visual system, the pursuit pathway operates on
the delayed signal p(t − τ) as described in section
2.

The target predictor consists of a linear predictor
which attempts to predict the current location of
the target stimulus based on a number of target
locations that are delayed by τ time steps.
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Figure 1: The model consists of a number of interacting modules for different processes. The visual stimulus
can control gaze through three different pathways: the reactive saccade pathway that directs attention to a salient
stimulus; the event prediction pathway that direct attention to location where the target is predicted to appear;
and the anticipatory pursuit pathway that controls smooth eye movements based on the predicted position of the
target. See text for further explanation.

p̂(t + 1) =

n∑

i=τ

ci−τ (t)p(t − i).

The scalar coefficients ci are learned on line based
on the error of the prediction. Note that the sub-
scripts of the coefficients indicates that they re-
lates to signals that have been differently delayed
while the argument t indicates that the coefficients
change over time as a result of learning. Thus, at
time t, we know the correct target location at time
t−τ and can update the constants based on the pre-
diction error e(t− τ). The weights of the predictor
are updated according to the following equation,

ci(t + 1) = ci(t) + αe(t − τ)p(t − i),

where α is the learning rate and e(t) the prediction
error. As a consequence of this equation, the coef-
ficients will change in a direction that makes the
prediction error decrease. Note that the predictor
is simultaneously operating in two different time
frames as explained in section 2, one for learning,
the perceived now where previous predictions can
be compared with actual target positions, and one

for prediction, the anticipated now where the actual
target position is not yet accessible.

Finally, the uncertainty U(t) of the prediction is
calculated as an exponentially decaying average of
the prediction error e(t),

U(t + 1) = (1 − β)U(t) + βe(t − τ).

The constant β controls the amount of decay. The
value U(t+1) is subsequently used to calculate the
confidence of the prediction

C(t + 1) = e−U(t+1).

PID Controller The eye control system uses
a standard proportional-integral-derivative (PID)
controller. This one of the simplest forms of con-
trol systems often used in technical applications. In
such a controller, the control signal v(t) is the sum
of three different terms P, I and D,

v(t + 1) = v(t) + C(t) [cP P (t) + cII(t) + cDD(t)] ,

where P (t) is the error of the gaze position, I(t) is
the integral of the error over time, I(t) =

∑t

i=0 P (i)
and D(t) is the differentiated error D(t) = P (t) −
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P (t− 1). The values cP , cI , and cD are parameters
that define how much each type of error term con-
tributes to the control signal. The three terms have
different roles in controlling the speed of the eye.
The proportional term P (t) tries to immediately
compensate for the error. The integral term I(t)
adds errors over time which makes the gaze even-
tually catch up with a moving target. Finally, the
derivative term D(t), helps the system cope with
sudden changes in the target position. Although it
would be possible to include learning of the param-
eters in the controller, this was not used in the cur-
rent implementation.

The three control signal is multiplied with the
confidence from the target predictor to model the
development of smooth pursuit. The result will be
that the gain of the controller depends on the con-
fidence of the target prediction. As the model be-
comes more accurate, the gain will increase, and the
complete system will gradually become more able
to pursue a moving target. This is a critical aspect
of the model as it could explain the transition in
infants from tracking based on saccades to tracking
based on smooth pursuit. By using the confidence
of the prediction to set the gain of the controller
the system is automatically shielded from moving
the eye too fast and perhaps incorrectly before it
has an accurate model of the way the target be-
haves. Once the prediction becomes better the gain
will increase and the pursuit system will lock on to
the target. As a consequence, the target will be in
focus a larger fraction of the time and the number
of saccades will decrease.

3.3 Event Prediction Pathway

The event prediction pathway contains one main
module that detects events and forms associations
between them. When this module predicts that the
target will appear it will produce an endogenous
saccade a(t) to the expected location and simulta-
neously inhibit the saccade generator (Fig. 1).

An event is defined as any abrupt change in any
variable within the system (cf. Prem et al., 2002).
In the present model, we have included two sig-
nals that are used to detect events: the tracking er-
ror and the recognition of the target objects. Fast
changes of the tracking error will thus be consid-
ered as an event as will the appearance or disap-
pearance of the target. When an event occurs the
type of event and corresponding location is saved
so that it can potentially be correlated with other
later events.

The anticipated changes in target motion and
location are learned as associations between two
events: E1 → E2, where E1 may be the disappear-

ance of the target or the fact that the target reaches
a certain location, and E2 is the reappearance of the
target or the expected new position of the target.

The learned associations does not only code that
a target disappearing at a location 〈x, y〉 will ap-
pear at another 〈x′, y′〉, but also the time between
the two events ∆t and the expected velocity when
the target reappears v (Poliakoff, Collins & Barnes,
2004): 〈x, y〉 → 〈x′, y′, ∆t, v〉.

This learning is driven by the rewarding property
of the target, i. e. when the target appears it will
generate a reward that will drive the learning of
the event associations. This is consistent with the
observation that all brain systems involved in the
linking between visual stimulation and oculomotor
behavior encode the expected value of the target
(McCoy & Platt, 2005).

The anticipatory saccades constitute a form of
adaptive switching control strategy, where the an-
ticipatory saccade controller quickly sets the pa-
rameters of the smooth pursuit controller to imme-
diately obtain good tracking performance (Huang
& Lin, 2004). For example, if the target is first mov-
ing along a straight line with constant velocity, the
target predictor will anticipate that this movement
will continue and the eye will thus follow this line.
However, if an even occurs that indicate that the
target will change direction, it is necessary to re-
set the current prediction and instead predict the
new target motion that is cued by the event. Ev-
idence that arbitrary stimuli can be used to pre-
dict the appearance, time and velocity of a stimu-
lus in adults comes from experiment by Barnes and
Donelan (1999).

4 Results

The model was tested in an experiment that was
similar to one reported by von Hofsten & Rosander
(1997), with a target that moved back and fourth
along a horizontal line. There was a 100 ms delay of
the visual input. A new frame was processed every
20 ms to parallel the human visual bandwidth of
approximately 50Hz. One cycle where the target
moved back and fourth one time lasted for 5 second
and the target moved over 60 degrees of the visual
field from end to end.

The constants were set as α = 0.1, τ = 5, and
n = 7. To be able to evaluate the target predictor
after learning, the theoretical prediction coefficients
ci were calculated for three types of predictors: (A)
a simple linear extrapolation of position based on
the calculated velocity between the last two target
positions and the known delay τ , (B) another linear
predictor that averaged the last two estimated ve-
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locities, and (C) a prediction that also included the
estimated acceleration of the target. As can be seen
in Table 1, the theoretical model that takes accel-
eration into account gives the smallest error. How-
ever, when noise is added to each target location,
the performance of this predictor deteriorates con-
siderably. In this case, the predictor that averages
over two velocity estimates gives the best result.

The target predictor was subsequently allowed
to learn the prediction coefficients from observa-
tions of an sinusoidal motion along the horizontal
line. When the predictor had learned the coeffi-
cients, they resembles predictor B, except that c1

is not zero indicating that the current position is a
weighed average between the last two target loca-
tions. The performance of this learned predictor is
close to that of predictor B.

We also tested what the target predictor would
learn if the amount of noise was increased. In this
case, it is able to learn coefficients that results in
a lower average error than any of the other predic-
tors since it learns to essentially use the average of
the last three target positions as the estimate. Al-
though the error is reduced, the target estimation
now lags the real target location and is no longer
anticipatory.

These results show that a linear predictor can
learn the appropriate coefficients to make anticipa-
tory estimates of the target location. These coeffi-
cients favor an estimation that averages over several
target locations and will thus only become antic-
ipatory when the target locations are sufficiently
reliable. The learned predictive model is a compro-
mise between limiting the sensitivity to noise and
making an accurate prediction.

The development of the pursuit system was sim-
ulated for the model when it continuously viewed
a sinusoidal movement. As the confidence of the
prediction increased, so did the gain of the smooth
pursuit system. The parameters were set as in the
previous simulations. The target moved either ac-
cording to a sinusoidal path or in a triangular way
(Fig. 2).

Fig. 2 shows the development of smooth pursuit
from initial saccadic tracking to the final model
based tracking. Even when a predictive model is
used to control the gaze, there is still a small over-
shoot that is casued by the abrupt change of di-
rection in the triangular motion. This overshoot
almost completely disappears when the event de-
tection system is added. In this case, the predicted
target location at the end of the envelope triggers
an event that will associate to a new velocity and
direction of the target.

Figure 2: The development of smooth pursuit in the
model while tracking a sinusoidal or triangular target
motion. Left: No smooth pursuit. Middle. An inter-
mediate stage. Right: Fully developed predictive smooth
pursuit. The difference between the tracking motions is
mainly a result of an increased gain of smooth pursuit.

5 Discussion

The model shows how it is possible to combine three
different types of gaze control: reactive, continuous
model based, and event driven control using a form
of switching control that depends on both the loca-
tion of the target on the retina and on the certainty
of the the predicted motion of the target. The be-
havior of the model shares many properties with
the gaze control of infants and develops through
similar stages.

The reactive part of the model produces exoge-
nous saccades to salient targets but is not able to
predict the movement of the selected target. On
its own, this subsystem will be able to track a mov-
ing target using small saccades that always lags the
real position of the target (cf. Itti, Koch & Niebur,
1998).

In contrast, the pursuit system anticipates the
continuous behavior of the target and is able to
look on to its movement. If the model is correct,
this will allow the gaze to be directly centered on
the target while it is moving. The gain of this sub-
system depends on the accuracy of the prediction.
Smooth pursuit will thus become more frequent as
the model becomes more accurate. This will au-
tomatically result in a gradual development from
a primarily saccade-based gaze control strategy to
one that depends increasingly on smooth pursuit
that parallels the development of infant gaze con-
trol (von Hofsten & Rosander, 1997, Lengyel, et
al., 1998, Richards & Holley, 1999, Rosander & von
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Table 1: Theoretical and learned prediction coefficients and the corresponding prediction errors with and without
noise with a sinusoidally moving target. The noise was additive with a range from -10 to 10 degrees.

Type c0 c1 c2 LMS Error With Noise
A. Linear 6 0 -5 2.0 · 10−3 3.3 · 10−2

B. Averaged 3.5 0 -2.5 2.2 · 10−4 1.8 · 10−2

C. Acceleration 18.5 -30 12.5 3.3 · 10−5 3.5 · 10−1

Learned 3.2 0.33 -2.53 2.4 · 10−4 1.9 · 10−2

Lrn w noise 0.36 0.32 0.24 5.3 · 10−3 5.3 · 10−3

Hofsten, 2004). The model suggests that the tran-
sition from saccadic pursuit to smooth pursuit in
infants is a result of a gradually developed ability
to predict the behavior of moving targets. This im-
plies that an infant should be able to use smooth
pursuit to track a complex but known target mo-
tion, but not a simpler but novel target motion.

The final part of the model detects discrete
events and forms predictions between them. Such
an event can be the target disappearing or reap-
pearing or a sudden change in motion. By learning
relations between discrete events, it becomes pos-
sible for the model to use simple general continu-
ous models for smooth pursuit while simultaneously
being able to anticipate complex target behaviors.
The ability to predict discrete events develops in
infants as early as the second month of life (Haith,
Hazan & Goodman, 1988), and if such expectations
are allowed to influence the parameters of the tar-
get predictor, the continuous models do not need
to be very complex.

The model makes the explicit prediction that vi-
sual tracking requires two complementary predic-
tive systems: one that learns continuous models of
target motion and one that learns discrete events
that changes the motion of the target. An interest-
ing question is the relative roles of the continuous
target predictor model and the discrete event pre-
diction system. The simulations show that the com-
plexity of the predictive models that can be learned
depends to a large extent on the amount of noise
in the system. For example, if the noise increases,
it is no longer possible to learn a model with ac-
celeration. With even higher noise, the model loses
its ability to predict and will simply average the
previous positions to estimate the current location
of the target. However, in the real world, the mo-
tion of a target object can often be very complex
and noisy. Does this mean that an infant will not be
able to learn to track such targets? On the contrary,
the model suggests that the way to handle complex
motion is through a second subsystem that detects
events and directly changes the parameters of the
target predictor.

The model also suggests that the different predic-
tive models that an infant learns should operate in
world coordinates. Although it is conceivable that
ego-centric or eye-centric coordinates could be used
for simple linear motion, this immediately becomes
problematic if the observer is moving around in the
world. In this case, it would be necessary to ad-
just the prediction for ego-motion which is just as
complicated as using world coordinates in the first
place. This prediction could be tested by investigat-
ing how ego-motion interact with smooth pursuit.

In the future, we want to further investigate how
the system can learn and use several different mod-
els concurrently (cf. Wolpert et al., 2003) and how
the task context can influence which model is used
(Doya, et al., 2003, Balkenius & Winberg, 2004).
This type of model may also form a basis for the
study of the development of synchronization and
imitation (Barnes & Donelan, 1999).

We also want to investigate the relation between
this type of switching control and reinforcement
learning and how the system can learn to gener-
alize from previously learned scenes to new ones,
which may eventually make it able to track moving
objects perfectly on the first trial.

A limitation of the current model is that the as-
sociation mechanism is very simplistic since it only
associates two subsequent events with each other.
It can not learn regularities over longer times if
they are interrupted by other events. This limita-
tion will be addressed in the future when a more
advanced associative mechanism will be included
in the model.
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