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Abstract. We present a theoretical analysis of schema-based design
(SBD), a methodology for designing autonomous agents architectures.
We also provide an overview of the AKIRA Schema Language (AKSL),
which permits to design schema-based architectures for anticipatory be-
havior experiments and simulations. Several simulations using AKSL are
reviewed, highlighting the relations between pragmatic and epistemic as-
pects of behavior. Anticipation is crucial in realizing several functionali-
ties with AKSL, such as selecting actions, orienting attention, categoriz-
ing and grounding declarative knowledge.

1 Introduction

In the last two decades several theoretical and computational models have been
inspired, directly or indirectly, by theories of sensorimotor and cognitive devel-
opment [9, 11, 53] that describe schematic structures, or ‘schemas’, as crucial in
behavior and cognition. The term ‘schema’ was firstly introduced by Bartlett
[8] to mean a map or structure of knowledge stored in long-term memory. Suc-
cessively Piaget [53] described schemas in a more operational sense, roughly as
mental representations of some physical or mental actions that can be performed
on an object or event. He considered schemas as the building blocks of thinking,
and the basic structure underlying behavior and cognition (in a process that he
described as ‘assimilation and accommodation’).

One tenet of schema theory is that schemas are specialized subsystems real-
izing a tight coupling between perception and action. A schema can be used for
recognizing a specific entity (say a dog) or a class of entities (say journalists or
swimmers), or for controlling a specific action (say opening a door or skying).
Some of these schemas may require parameters to be filled in. There can also
be more complex schemas for planning sequences of actions, as well as for more
complex cognitive operations such as doing inferences. Central to schema theory
is not only what schemas can individually do, but also how they are organized
and what they can collectively do.

This view has inspired several other researchers in cognitive science, artificial
intelligence and cognitive robotics. In these fields several schema-like structures



have been proposed, including frames [43], scripts [57], schemas [3, 4, 21, 44, 46,
60], neural schemas [39], semiotic schemas [55], and behaviors [12, 38]. Architec-
tures including distributed and competitive functional units are often referred to
as ‘behavior-based’ or ‘schema-based’. Several integrated frameworks have been
proposed for designing them; among the most popular ones, we can mention the
behavior-based approach proposed in [6], the NSL/ASL in [65] and the Robot
Schema (RS), a formal language for designing robot controllers proposed in [37]
which includes perceptual and motor schemas.

Since the term ‘schema’ has been used in several contexts, it has assumed sev-
eral senses, too. For example, Piaget referred mainly to sensorimotor schemas,
highlighting their action-oriented nature in contrast with other data structures
that only include conceptual knowledge. Schemas for processing stimuli or con-
trolling the perceptual apparatus are often referred to as perceptual schemas,
while those for controlling locomotion, reaching or grasping are often referred
to as motor schemas. Another important distinction is between anticipatory
schemas, that include predictive components, and reactive schemas, that do not;
and consequently between anticipatory and reactive schema-based architectures.

Reactive vs. Anticipatory Schema-Based Architectures. One important distinc-
tion among schema-based architectures is their reactive or anticipatory nature.
Originally, the label ‘behavior-based’ has been used as a synonym of ‘reactive’
[5, 12]. Reactive schema-based architectures, that respond quickly to dynamic
environments, have challenged traditional AI models which rely on slow and
costly deliberation. They are now de facto a standard in autonomous robotic
systems [56]. However, recently several schema-based architectures have been
proposed which include anticipatory mechanisms, such as inverse and forward
internal models, and which generate and exploit expectations about the next
sensory stimuli [13, 18, 21, 47, 67]. These anticipatory aspects are inspired by psy-
chological theories of action control [30, 34], indicating that anticipated effects
of (possible) actions play a fundamental role in regulating the agent’s behavior.
Several neurobiological evidences also suggest internal models and in particular
forward models as plausible candidate mechanisms [40, 66]. See also [22] for a
comprehensive review of neural correlates of anticipation in the brain.

Aims and structure of the paper. The main contribution of the paper is twofold:
illustrating the schema-based design methodology and its peculiarities, and pre-
senting a comprehensive framework and an implementation environment for an-
ticipatory schema-based architectures. Accordingly, in the rest of the paper we
firstly introduce schema-based design (SBD) as a methodology for building au-
tonomous agents architectures. We then present the AKIRA Schema Language
(AKSL), a framework for designing and implementing anticipatory schema-based
architectures, and we review simulations realized with it.



2 Schema-Based Design (SBD)

Schema-Based Design is a methodology for designing artificial systems. It is
inspired by ethological and neuroscientific empiric evidence [3, 4]; and many
schema-based architectures are directly inspired by ethological models, such as
the praying mantis in [5], the computational frog in [2], and the computational
cockroach in [10]. In SBD the functional aspects are more stressed than the
actual realization and localization of schemas in the brain: several researchers
find schema useful exactly because they provide an intermediate level of repre-
sentation between the neural and the personal level [3]. In SBD cognition and
behavior are explained in terms of schemas and their dynamics: behavior is not
controlled by an unique process, but emerges from the dynamic competition
and cooperation of several active schemas. More complex cognitive functionali-
ties can emerge both by sophisticating the schemas and by permitting them to
interact in more complex ways.

2.1 What’s in a schema?

Schemas are coarse-grained functional units, being approximately at the same
level of description of ethological and neurobiological units of automatic action
control such as detect prey or escape [5, 47]. They do not only contain conceptual
knowledge, but are strongly action-oriented and include perceptual and motor
elements. Schemas consist of actions and sensory information organized around,
and serving to realize, a goal or a set of related goals. In their simplest form,
schemas can be described as sets of rules having the form condition → action
or condition → action → expectation (respectively in the case of reactive and
anticipatory schemas), that can act in parallel or in series, and whose success
corresponds to the achievement of a goal.

Fig. 1. A sample schema: chase prey

As an example, Fig. 1 illustrates the main functional components of a sample
motor schema, which is named after its goal: chase prey. It includes two sample
triggering conditions: hungry, that indicates the value of a drive, and prey in
sight, that indicates the presence of specific stimuli in the visual field. It also
includes three actions3: approach prey, grab prey, eat prey. They can be imple-
3 In this example each action is represented as a localist sub-unity of the schema. How-

ever by using a distributed representation scheme, multiple actions can be embedded
implicitly, say in a single neural network; see for example [62, 63].



mented as rules, or set of rules, which receive perceptual input and send motor
commands such as ‘go left’ or ‘go right’ to the motor apparatus of the agent.

Schemas have four main properties: goal-orientedness, flexibility, selectivity,
and excitability.

Goal-orientedness. The goal-centered behavioral organization of a schema
is its first property. This aspect also distinguishes schema-based systems from
production systems and classifier systems [13, 21, 31, 45], which also use rules
and rulesets. Related views are the ideomotor principle [34] in psychology, the
TOTE [42] model in cybernetics, and the definition of goal-orientedness provided
by Gallese and Metzinger [24]: “Action control actually equates to the definition
of the action goal: the goal is represented as a goal-state, namely, as a successfully
terminated action pattern”.

Flexibility. Goal-orientedness does not imply, however, that schemas have only
one way to realize their goals: they can flexibly realize their goals under variable
contingent conditions and by exploiting a (limited) repertoire of actions. This
property can be called flexibility.

Fig. 2. A sample sequence of actions realized by the chase prey schema

When chase prey is active, its actions can be triggered in a different timing
and order, or be skipped, depending on the context. In the example illustrated
in Figure 2, the three actions are simply concatenated. Approach prey is imme-
diately triggered, since the two preconditions, hunger and prey in sight, still hold
if the schema is active. If approach prey succeeds, it produces as a consequence
prey close, which in turn triggers grab prey, and so on. The success of the last
action, eat prey, also entails the success of the whole schema. The failure of one
of the actions can instead trigger another action, or produce a context in which
no actions are suitable, and thus lead to the failure of the whole schema.

Selectivity. An important consequence of schemas’ goal-orientedness is their
selectivity : in order to realize their goal, schemas do not need (and can not
process) all the possible information from the environment. On the contrary,
they select, attend to, and use only stimuli which are relevant for its specific
goal. This implies that when a schema is operating the action-perception loop of
the agent has both pragmatic effects (realizing the goal via triggering actions)
and epistemic ones (gathering relevant stimuli).



Fig. 3. Possible sequences of actions realized by a perceptual and a motor schema

In several schema-based frameworks epistemic and pragmatic aspects are
implemented in different schemas: perceptual and motor. However, these schemas
are either embedded one in another, [3, 4], or they can pass sensory information
[47]. The dotted lines in Figure 3 indicate the functional relations between one
perceptual and one motor schema (detect prey and chase prey) which can pass
sensory information. Detect prey includes as triggering conditions specific stimuli
such as red and moving. It includes as actions three specialized strategies for
finding preys the first time (find prey), maintain it in the visual field (maintain
prey), and find it again if it is temporarily lost (re-find prey). The edge from
detect prey to chase prey indicates that the former schema can trigger the latter
(this is the meaning of the triggering condition prey in sight).

In this example the actions of the chase prey motor schema can be triggered
by (the success of) other actions both in the same schema or in the related
perceptual one, detect prey. Moreover, the perceptual schemas can convey to
the motor schemas sensory information, for example the position of the prey to
approach (not shown in the picture). Several courses of actions can emerge by
the interactions of the two schemas in different contexts, depending on which
functional relations are actually exploited. For example, a prey can be lost dur-
ing tracking: the failure to maintain prey triggers re-find prey. Or, the prey can
be captured without being lost, and in that case re-find prey is never activated.
Notice that not all the functional relations are shown; in particular, those result-
ing from failure are not (for example, if a prey is lost both maintain prey and
approach prey fail).

Excitability. The last important property of schemas is their excitability : they
have a variable activity level. As we will discuss in detail, the activity level rep-
resents its relevance and desirability in the current situation. It can depend on
motivational factors, such as active drives, and on contextual factors, such as
the presence of appropriate stimuli or of other active schemas. Each schema
gains resources, such as access to sensors and effectors, and as a consequence the
possibility to influence the overall behavior of the agent, in a measure depen-
dent on its relative activity level. This leads us to the next topic, which is the
organization and functioning of a whole schema-based architecture.



2.2 Schema-based architectures and cooperative competition

A schema-based architecture is distributed; it includes several schemas special-
ized for different goals, such as detect prey and detect predator, or for realizing
the same goal under different contexts, such as several instances of detect prey
specialized for different kinds of preys. All schemas cooperate, triggering one
another and exchanging sensory information, and compete for gaining priority
over sensors and effectors: only some of them can be (partially) active at once.
Such cooperative competition from which behavior emerges is considered a funda-
mental brain principle [3, 4, 43]. Competitive cooperation can be implemented in
multiple ways, but it exploits three principles of self-organizing systems: (1) local
excitation (e.g. active drives and schemas can excite other schemas); (2) global
inhibition (e.g. schemas and drives inhibit concurrent ones); (3) emergence: be-
havior emerges from the influences of several schemas that can be active at once.

Since commands from several schemas can be fused, a schema-based archi-
tecture can realize complex patterns of actions, most beyond the possibilities of
single schemas. An important aspect of schema-based design is the possibility to
realize systems which can fulfill more that one functionality, selecting the most
appropriate one on the basis of contextual factors such as current drives/goals,
stimuli and expectations. We can say that the most challenging aspect of SBD is
not implementing one specific functionality, but understanding how all them co-
ordinate and realize a complex system having habits and fulfilling its drives/goals
while remaining responsive to opportunities and affordances in the environment.
In several architectures schemas can also be arranged hierarchically [18, 27, 51,
54]; in this case top-down influences channelize behavior in accordance with ex-
pectations generated at the higher level, while the system remains responsive to
stimuli-driven bottom-up dynamics.

2.3 Pragmatic and epistemic aspects of SBD

Schemas are evolved by organisms to successfully interact with entities in their
environment, realizing their own goals. In producing behavior, schemas are thus
selected for their expected success in action; if there are several schemas for real-
izing the same goal in different contexts, the most fit is selected. Since schemas
are selected for action according to their activation level, a high activation level
of a schema encodes a high confidence that it is succeeding or it will succeed in
realizing its goal state (e.g. in detect prey : the prey can be detected). In summary:

The activity level of a schema encodes a degree of confidence that it
will succeed.

Although schemas are evolved for pragmatic reasons, their functioning also
entails several factors which can be considered epistemic, in the sense that they
are directed to acquire or process information. In traditional AI architectures
these operations are traditionally dealt with by manipulating explicit represen-
tations, for example comparing an observation with an expectation, assigning a



confidence level to an assumption, or matching an expectation. These operation
can instead be dealt with implicitly and procedurally in SBD.

In the literature of dynamical systems it is often assumed that embodiment
and structural coupling permits using information that is not explicitly repre-
sented in the system. For example, the environment can be used as an external
memory, provided that the agent’s sensors can access it often –a prey continues
to serve as a trigger of some schemas as long as it remains visible. In a similar
way, certain pragmatic states of the schemas, such as their successes or failures,
implicitly encode epistemic content. For example, it is possible to interpret the
success of a follow prey schema as an indication that there is a prey, without
any need to explicitly represent such state of affairs.

Therefore we discuss two functional equivalences: the degree of activation of a
schema corresponds to (1) the truth of its assumptions and (2) to the desirability
of its consequences, without any need to explicitly represent them (but, as we
will see, we can derive explicit knowledge from them).

The first functional equivalence There is a functional equivalence between
the success of a schema and the assumption that the state of affairs that it
permits to deal with is true. This is due to two reasons. First, action success
or failure depends on epistemic assumptions and conditions that are verified or
falsified by acting. Second, since the activity level of the schema depends on its
success rate, it also indicates a confidence level that the behavior is appropriate
and thus the entity to deal with is indeed there. As an example consider again
the detect prey schema; in order to successfully track a kind of entity, the preys,
the schema must be specialized to deal with prey-relevant features. Since in order
to gain activation the schema has to succeed in actually matching these features,
success of action is also a confirmation of such assumptions and expectations: a
prey is here, or will be here in the near future. The functional equivalence between
the success of the action and the truth of its assumptions and predictions is the
first functional equivalence:

The success of a schema indicates that specific (actual or expected)
states of affairs, encoded in its assumptions and expectations, are true.

We can now come back to the example in Figure 3. When the preconditions of
detect prey are verified (e.g. red is verified by the compliance of a visual routine),
the schema triggers its actions. In turn, the compliance of its actions continuously
verifies its preconditions (the success of find prey verifies red and moving) and
produces new conditions in the same or in other schemas (the success of find prey
produces prey found, which is a precondition of approach prey). This means that
actions in two schemas are triggered by epistemic assumptions, which in turn
are verified by the compliance of other actions.

As discussed above, several information can be implicitly dealt with. All the
conditions shown in the picture, such as prey found or prey close, do not need
to be explicitly represented, nor it is needed that symbolic information is passed
among the schemas or the actions (all the labels are only for the designer’s sake).



Their functional meaning is implicitly encoded in the functioning of the schema
mechanism, and in particular in the schema’s activity level. The activity level of a
schema, in fact, implicitly encodes the degree of confidence in its implications. If
a schema can access the activity level of other ones, it can use this information ‘as
if’ it was an explicitly reported condition. For example, an high activity level of
detect prey implicitly encodes conditions (e.g. prey found), that are informative
for chase prey. Further contextual elements, such as the state of the schema or
the presence of specific stimuli, help chase prey disambiguating the information
and triggering different actions such as approach prey or grab prey.

Very often epistemic information is graded and not crisp. For example I can
be more or less sure that a prey is in front of me. As a corollary of the first
functional equivalence, the degree of certainty, or confidence, in an assumption
can be formulated according to the degree of success of the shcema or action:

The activity level of a schema is a measure of confidence in its as-
sumptions.

Categories and Beliefs. Thanks to the first functional equivalence schemas can
not only be used for acting: their success also entails an implicit categorization
of the entities to deal with, and implicitly represents beliefs such as ‘there is
a prey now’. Bickhard’s interactivism [11] suggests a similar perspective: if an
active interaction fails, then the ‘indication for action’ (and the content of the
representation) is false. This fact has two main implications. Firstly, contrary to
the typical pipeline information-processing scheme perception → categorization
→ action, a prey is categorized as a prey because of the compliance of the detect
prey schema, and not vice versa (actually, there is a loop between all these
factors). Secondly, categories and beliefs do not need to be explicitly represented
anywhere, since the current activity level of schemas already indicates them. As
an example, in Section 4 we present a simulation in which such dynamical,
action-related categorization is realized.

As proposed by Piaget [53], in humans there is a progressive conceptualiza-
tion of information which is initially only procedural4. However, only part of
information implicitly used by the schemas becomes explicitly available, for ex-
ample for categorization, and internally manipulable when coupling is broken;
some information remains instead procedural. For a discussion of accessibility
and awareness of procedural information used in the control of action, see [23].

Epistemic Actions. We have discussed how actions can also have, as a side effect,
an epistemic value for the system. For example, knowing that the ball is there,
is round, is soft, etc., is a form of implicit knowledge that in some cases can
4 Some assumptions which are much more ‘profound’ and invariant are conceptualized

very late, when they are. Consider the assumption ‘under normal circumstances, the
world is quite stable’. In order to remain successful for a while, several (if not all)
schemas implicitly rely on this assumption, which is not however conceptualized.
We could say that also the functioning of the whole schema-based system encodes
several important assumptions about the world.



be internalized. But there is another, more sophisticated way for a system to
obtain information by exploiting the first functional equivalence: performing an
action with the aim to know something about the world (e.g. ‘control if’ or
‘look whether’). That is, I can turn on the light in order to know whether or
not the circuit works well, and not because I need light. In this case, we can
distinguish between the pragmatic action (action in the most common sense)
and the epistemic action, that is aimed at gathering information: the pragmatic
action (turning on the light) is only a vehicle of the epistemic one (knowing if
the circuit works well). This example illustrates that an action can have both
pragmatic and epistemic value, and it can be executed for the former or the
latter necessity. It is also worth noting that in order to know something about
the world we need to act on it (either actually or ‘in simulation’, see [26, 28]).

In Section 4 we will present a simulation showing the two main consequences
of the first pragmatic principle: (1) on the basis of pragmatic actions, either
real or simulated, epistemic states such as beliefs can be formulated; (2) epis-
temic actions are possible, too: some pragmatic actions, actually performed or
simulated, can be triggered for knowing something, and not for their pragmatic
effects. In both cases we interpret a belief as the result of an epistemic action,
which can be either implemented through a pragmatic action, or explicitly exe-
cuted by means of a pragmatic action. This view has an important implication:
all cognitive operations involving beliefs, such as reasoning, refer to (and have
their meaning thanks to) actual or possible pragmatic actions.

The second functional equivalence Organisms have motivations, and their
actions are determined by their needs. In schema-based design this is modeled
through motivational units, such as drives, causing schema activations: in this
way there is no need to manipulate and reason explicitly on utility and values
of entities in the world. As a consequence, typically a high activity level of a
schema also encodes the fact that it has been learned to, and is expected to be
effective for satisfying the organism’s needs: a primitive, implicit form of means-
ends reasoning. Again, success of action strengthens and tends to confirm the
relationship between a schema and the satisfaction of an organism’s need. Since
the organism can have competing motivations, typically the schemas for realizing
the most important or urgent ones are assigned the highest activity level and
are thus selected (but of course, as far as they do not penalize one another, more
than one schema can be selected). This implies that:

The activity level of a schema is a measure of desirability of (the
consequences of) its success.

In some cases the organism faces challenges that have to be dealt with very
quickly. As an example, consider an organism successfully following a prey. If an
unanticipated danger occurs, such as a predator, or the organism is near an abyss,
it has to quickly change its behavior and activate another schema, whichever the
activity level of the follow prey schema is. This means that a sudden change in



allocation of resources among schemas has to occur, depending on how promptly
the new situation has to be dealt with:

The rapidity of increase in activation of a schema is a measure of its
urgency.

The two factors, one epistemic and one motivational, which correspond to a
high activity level in a schema seem to be at odds: for example, a high activity
level of the schema detect prey, which depends on the organism being hunger,
also corresponds to the belief or expectation that there is a prey somewhere,
which could not be the case. However, in organisms there is a relation between
the epistemic criterion, that is maintaining true assumptions, and the motiva-
tional criterion, that is pursuing its needs. In order to succeed (and consequently
to satisfy its goals) an organism needs to maintain its epistemic states, and this
is why schemas are designed for implicitly checking their conditions. For this
reason an organism motivated by hunger can ‘bet’ on the success of the schema
for catching preys, maintaining artificially (against evidence) a high activity level
even if it is unsuccessful at the moment. Since activating a schema also means
inhibiting other ones, this strategy is only good if the schema will indeed succeed
in the near future, otherwise the organism will die. This means that the organism
is selected by evolution to have ‘good guesses’ and to fuel schemas that will suc-
ceed and, in that way, verify their assumptions: the first functional equivalence
is not broken, only postponed. The correspondence between the desirability of a
behavior and the truth of its assumptions is the second functional equivalence:

The activity level of a schema is a measure of confidence that it will
be successful, and consequently that its assumptions and expectations
will become true.

Notice that this principle works due to the fact that, at the end, each schema
predicts its own success, too. The teleonomic structure of a schema can be thus
represented as condition → action → expectation → . . .→ expectation → . . .→
action→ . . .→ success. A schema is selected by evolution because of the adaptive
advantage of (the implications of) its success. Its structure guarantees the desir-
ability of its intermediate actions as well as the meaningfulness of the assump-
tions and expectations it produces during its execution. Schemas are learned for
dealing successfully with the environment: maintaining correct representations
and betting that they will be useful are two sides of the same coin.

3 The AKIRA Schema Language (AKSL)

The AKIRA Schema Language (AKSL) has four main components: schemas,
drives, routines, and actuators. It is build on the top of the AKIRA simulation
framework [1] and integrated with the Irrlicht 3D engine [33] and the Ikaros
simulation framework [32]5.
5 The sourcecode of AKSL is available in the AKIRA website [1].



3.1 Schemas

Schemas can be described as tuples (det,inv,for,urg,rel,app,con,act,thr). The
first three parameters represent their components:

– det is a detector6, i.e. the selector of a certain kind of stimuli (each schema
only processes some information which has been learned to be significant)

– inv is an inverse model, deciding a motor command to send to an effector
– for is a forward model, calculating the expected next stimuli

Basically each schema has a cycle in which: (1) the detector collects sensory
information (received by perceptual routines) and the sensory expectation (re-
ceived by the forward model), compares them (dotted circle in Fig. 4: the degree
of mismatch is used for calculating rel, see later), and sends a sensory input to
the inverse model; (2) the inverse model, on the basis of the input received, cal-
culates a motor command and sends it to the effector (camera or wheel motors);
(3) the forward model receives an efference copy of the final motor command (of
the camera or wheel motors), generates a sensory expectation and sends it to
the detector.

The cycle of each schema is run asynchronously and in parallel with each
other, with an amount of computational resources (speed and memory) that
depends on its activity level. Five other parameters are used for calculating the
activity level at the beginning of each schema’s cycle:

– urg is the urgency value, representing how promptly the schema has to be
executed when its contextual conditions are met. This parameter is very high
in schemas which have to deal with risky situations, in which an immediate
action is needed.

– rel is the reliability value, representing how much that schemas is (expected
to be) successful in the current situation. The reliability value is set according
to the degree of match of the expectations generated by the forward model
for with respect to the actual stimuli.

– app represents the appropriateness with respect to currently active drives
and goals. It is a learned parameter.

– con is a learned contextual parameter that depends on the activity level of
other schemas. Schemas can in fact evolve links with an hebbian-like mecha-
nism explained in [49], which permit to transfer activation. This associative
mechanism permits mutual priming of schemas that are often active in the
same situations.

6 Optionally more sophisticated operations can be realized inside the detector. For
example, as in Kalman filtering [36], a reliability value can be assigned to stimuli
and expectations, and the final input be calculated as their weighed sum. In this case,
if the stimulus is lacking or inaccurate, the expectation can be used for (partially)
replacing it. Another possibility is to erase from the stimulus the self-generated
part, predicted by the forward model. This functionality is useful e.g. for avoiding
tracking our own hand when it is in the visual field. Moreover, as in Smith predictors
[61], the prediction of the forward model can be fed at different time intervals for
compensating long loop delays.



– act represents the total activity level of the schema, which sums up the
epistemic and motivational factors. It is calculated as urg + rel + app + con.
Thus, the final activity level of a schema represents how much the schema is
expected to be both effective (successful) and desirable in the given context
(according to current drives/goals and other contingent factors).

– thr is a threshold for sending motor commands. Under the threshold the
schema functions normally but its motor commands to the actuators are
inhibited.

Fig. 4. Example of the coupled perceptual and motor schemas.

Coupled perceptual and motor schemas Perceptual and motor schemas
can be coupled. The functioning of two sample coupled schemas, detct prey and
chase prey, is illustrated in Figure 4. The perceptual schema receives as input
perceptual information from the camera (data are preprocessed by perceptual
routines). As indicated by the dotted circle, sensed stimuli are compared with
sensory information that is predicted by the forward model, and the error is used
for setting the reliability value rel of the schema. The detector thus sends sen-
sory stimuli to the controller (inverse model), which in turn generates a motor
command and sends it to the camera motor (via motor routines), and (option-
ally) sensory information (e.g. the position of the detected prey) to the coupled
motor schema. The motor schema receives as input the activity level of the cou-
pled perceptual schema, proprioceptive information about the current state of
the wheels’ motor, and optionally additional sensory information from the per-
ceptual schema. Like in the perceptual schema, sensed and predicted stimuli are
compared and reliability values are assigned. Sensory information is conveyed to
the controller, which sends motor commands to the wheels’ motor (via motor
routines). Notice that in both schemas, in order to generate predictions, the for-
ward models receive an efference copy of the (final) motor commands received
by the camera or wheel motors, and learn to predict their sensory effects.



Three modalities Schemas can operate in three distinct modalities: (1) gen-
eration; (2) simulation; (3) imitation.

The mode generation is the default one and serves for generating behavior
appropriate to the context. The functioning is the one previously explained.

The mode simulation is used for predicting the long-term effects of schemas.
When a schema runs in simulation the motor commands generated by its inverse
model are inhibited and not sent to the actuators; however, efference copies are
sent as usual to the forward model, which generates expectations and sends them
to the detector. Inside the detector, expectations are not matched against stimuli
(and their accuracy can not be calculated), but directly fed to the inverse model.
The simulation mode thus produces a loop between the forward and inverse
model, generating simulation of possible courses of events which extends over
several steps. Schemas in simulation mode can also be run faster than real time,
thus actually simulating several steps beyond7. The simulation mode can be used
for producing, testing and selecting in advance multiple alternative courses of
events ‘proposed’ by different schemas. For example, if an agent has alternative
schemas for navigating, by running them in simulation it can explore ‘virtually’
(and not by trial and error) its environment. This permits to foresee possible
dangers that can arise during navigation, to anticipate if by following a path
it is actually possible to reach a target location, or to calculate which is the
shortest path to a target location by comparing the time spent for simulating
the alternative ones. In principle all schemas can be run in simulation, regardless
of their actual reliability and activity level (but notice that simulating is a costly
operation). However, only schemas whose reliability value is significantly high
are able to generate predictions which are adapt to the current context.

The mode imitation serves for understanding (and possibly reproducing) be-
havior observed in a demonstrator (see [17]). When schemas run in imitation
mode the perceptual state (observed in the demonstrator) is fed to the inverse
models which generate the motor command that would have produced in that
situation. The motor commands to the actuators are inhibited, but the efference
copies are fed to the forward models which generate the next predicted percep-
tual state, which is thus compared with the next perceptual state (observed in
the demonstrator). This process roughly corresponds to the question: “which of
the schemas could have generated the perceptual states I observe?”, the answer
being the schema(s) which are accurate in predicting. By knowing that, the agent
is now able both to understand the demonstrator’s actions, and to imitate them.
Of course depending on the differences between the agent’s and demonstrator’s
behavior repertoires, imitation can be more or less accurate.

7 A more complex possibility is running in simulation the whole schema-based system.
In this case, predictions generated by one schema are also fed to other schemas. The
effects of the motor commands on actuators and sensors are simulated, too, and
then predictions replace sensory information in the whole system. This mechanism
permits to test in advance not only the long-term effects of single schemas, but also
their combinations. Notice that it is impossible to use the schema-based system in
generation and simulation at the same time.



3.2 Determining the activity level of schemas

Schemas in AKSL couple perception and action via anticipation: they learn
to associate stimuli to behavior which produces appropriate expected results8.
As already discussed, thanks to their dual nature, schemas are well suited for
both pragmatic activity such as guiding behavior, and for epistemic activity
such as categorization. This is due to the fact that their activity level depends
both on their reliability, and on their appropriateness with respect to current
drives/goals.

Schemas are assigned a reliability level depending on how well they predict
the sensorimotor flow. The reliability of a perceptual schema is a confidence
level that a certain entity, encoded in the schema, is expected to be present. For
example, if the schema detect prey has a high activity level, not only it can be
assumed that it is successfully tracking the prey (with the camera), but also that
there is, or there will be, a prey in the visual field. For this reason, the most
important aspect of perceptual schemas is their epistemic side: if an architecture
has several perceptual schemas, they can be seen as competing hypotheses for
representing/categorizing the current perceptual situation, such as detect prey
vs. detect predator. The reliability of a motor schema is instead a confidence level
that the behavior encoded in the schema is applicable in the context.

As an example, consider the catch prey schema. The most important aspect
of motor schemas is pragmatic: they can be seen as competing behaviors, or as
different means to realize the same behavior. However, even perceptual schemas
have relevant pragmatic aspects (they orient attention by moving the camera)
and motor schemas have epistemic aspects (they contribute to categorization).
Each schema has thus both aspects, since its success implies both achievement
(of action) and categorization (of object/event).

The current motivational state of a schema-based agent also influences the
activity level of schemas. This means that when a schema-based agent has hunger
or is fearful its schemas for detecting and catching preys in the former case, or
for detecting and escaping from predators in the latter case, will gain activation.
In this way the agent’s pragmatic activity is oriented toward desired goal states,
such as preys or hiding places. Attention is channelized toward relevant stimuli,
too: the agent spends many resources in deciding whether or not there is a prey
than, say, deciding whether or not there is an hiding place. This is obtained
by drives (such as hunger) providing activation to relevant perceptual schemas
(such as detect prey). This happens even when there are not preys in the visual
field; and since a high activity level of detect prey can in turn be interpreted as
an evidence that there is a prey, this process causes visual imagery: the agent
‘imagines’ what it is searching for. However, this is only temporarily: although
hunger can artificially maintain a high activity level for some time, if there are
8 Several machine learning methodologies have been used in literature for learning

the inverse and forward models, and for evaluating the degree of mismatch between
stimuli and expectations; for example, in [67] responsibility signals are used. AKSL
currently permits to use both fuzzy logic and feed-forward or recurrent neural net-
works libraries; see [49].



no preys the schemas for detecting and catching them will still be not relevant
and thus will lose activation.

There is also a general constrain on how much activation can be assigned to
schemas. Activation, to be divided among schemas, is in fact limited. Schemas
compete for acquiring resources: they can not access them while they are used
by other schemas, but have to wait until they are released (the mechanism is
based on the AKIRA Energetic Model, explained in [49]). This means that ac-
tive schemas inhibit one another via the allocated resources but without lateral
inhibitions. By modifying the total amount of activation available it is also pos-
sible to channelize behavior in different ways, since few or many schemas can be
active at once.

3.3 Motivations and Routines

AKSL permits also the design of simple motivational systems: as in several
ethological studies, drives such as hunger and fear can be implemented. We
have also included in AKSL several routines such as detect red or move left for
pre-processing information (e.g. sensory data).

Although they have very different roles, drives and routines are implemented
in a similar way. Each drive and routine embeds a simple operation. In the case
of drives, this may consist in a ‘biological clock’ (e.g. raising the activity level
of hunger). In the case of routines, this may consist in reading the value of a
sensor, or sending a motor command to an actuator. Schemas do not receive
input from sensors and do not send output to actuators: three kinds of routines
(perceptual, motor and proprioceptive) have the role to mediate between them.

Drives and routines have an activity level act and can exchange activation
with other components. For example, drives typically fuel appropriate schemas,
and schemas fuel routines (and vice versa). The more a drive is active, the more
it can fuel the schemas which satisfy it; thus drives introduce a motivational
influence on the agent’s behavior. The more a routine (e.g. detect red) is active,
the more it reliably finds a pattern in the sensor (e.g. red is detected). Energetic
links between schemas, drives and routines can be learned via a hebbian-like
system. The rationale is that schemas whose success reliably satisfy drives be-
come associated with them, while schemas become associated with routines that
provide useful input or output facilities. See [47] for the details.

3.4 Sensors and Actuators

Perceptual and motor routines receive input from sensors such as a camera. The
actuators (camera or wheel motors) receive asynchronous commands from the
motor routines and perform command fusion (libraries based on fuzzy logic and
mixture of Gaussians are available; see [49]). In many systems in the literature
(see [14] for a review) several schemas can be partially active at once but only one
is selected for commanding the actuators. In our model each active schema sends
concurrently its motor commands to the actuators via the motor routines. Since
more active schemas receive more resources and can perform their operations



faster, they also have a higher firing rate when sending motor commands. The
actuators fuse all the motor commands asynchronously received; this means that
a schema with an higher activity level (and as a consequence sending commands
with higher firing rate) also influences the actuators more. Notice that this has
not necessarily only impact on the agent’s movements. Since one of the actuators
is the camera motor, that actuator also determines which sensory information
the agent pays attention to.

3.5 Comparison with related literature

AKSL shares resemblances with other schema-based architectures such as [3,
37]. With respect to them, the two main differences are the presence of internal
models and the fact that perceptual and motor schemas are separate units which
can however be coupled. AKSL shares resemblances with MOSAIC [67] and
HAMMER [18], too. Differently from them, AKSL uses a parallel architecture in
which the activity level influences directly the amount of computational resources
(speed and memory) assigned to each schema, without explicitly calculating
responsibility values. The second difference is that schemas compete for limited
resources and active schemas inhibit other ones. The third relevant difference
is that commands are received and fused asynchronously by the effectors; a
high activity level permits schemas to have a higher firing rate of and thus
to send more commands. Lastly, AKSL also permits hebbian-like learning and
spreading activation between the schemas, which can thus provide activation to
one another, being in the same or in different hierarchical layers. See [49] for the
details of the architecture.

4 Exemplar Capabilities of AKSL

We have used AKSL for addressing several research fields. Here we review our
simulations in the fields of (1) action selection and attention, (2) category for-
mation, (3) simulation of future behavior, (4) grounding, and (5) hierarchical
control of action.

4.1 Action selection and attention

Recently several anticipatory schema-based systems have been proposed for ac-
tion control in robotics which base action selection on predictive success, both
in distributed approaches [62, 63] and in localist ones, such as MOSAIC and
HAMMER (but other exist, [64]). They use a combination of forward and in-
verse models for generating competing motor plans for the same or for different
targets, and the models predicting better are selected for the control of action.
This responds to two related questions: which action is preferable given the sen-
sory and goal context? Which schema can successfully actuate the action? These
questions become related if success of prediction is used for action selection: a
successful schema performs an action (and satisfies a drive/goal), thus a schema



predicting well also predicts its own success. On the contrary, not only schemas
which fail, but also schemas which are expected to fail, can be assigned less activ-
ity. Differently from several schema-based models, in MOSAIC and HAMMER
there is not a one-to-one correspondence between a schema and a behavior, but
each behavior (e.g. ‘grasp teapot’) is realized by the cooperation and competi-
tion of several schemas, specialized for different contexts (e.g. ‘light’ or ‘heavy’
cup). Thus, competing models generate alternative motor plans, such as grasp
full teapot vs. grasp empty teapot, which are selected according to the basis of
how accurately the models predict the right sensorimotor flow. When a motor
command is generated for grasping a teapot, an efference copy is used by the for-
ward models in the two modules for generating the sensory consequences under
two different contexts. These predictions are thus compared with actual sensory
feedback, and the most appropriate one is selected for action control. Commands
of the two modules can be combined linearly, providing generalization.

In [47] we have described a schema-based architecture (see Fig. 5), inspired
by an ethological model of the praying mantis, which shares resemblances with
MOSAIC and HAMMER but uses AKSL. In that architecture predictions gener-
ated by the forward models are not only used for determining schemas’ reliability,
but also used for orienting the motor apparatus (camera and wheels). Perceptual
schemas gather information relevant for the current task, and orient the camera
toward relevant inputs (e.g., relevant colors and trajectories), also determining
part of the next stimuli, like in active sensing. Motor schemas select the most
appropriate motor action (e.g., specialized for following or escaping from quick
or slow, big or small entities). The first novelty of this architecture is the possi-
bility to deal with multiple concurrent drives, whose urgency changes over time
(depending on internal regulatory mechanisms or by external stimuli). The chal-
lenge is generating the appropriate behavior for satisfying the currently active
motivation. Depending on the current motivational state, affordances offered by
the environment are selected: for example, an hunger agent tries to catch prey,
while a fearful agent that is escaping from a predator avoids prey. The sec-
ond novelty is that perceptual and motor processes are integrated in the same
framework and coupled, and the agent is able to orient attention for gathering
information necessary for satisfying its current needs. The two aspects, deter-
mining behavior and orienting attention, are closely related in AKSL thanks to
the coupling of perceptual and motor schemas.

4.2 Category Formation

Schema activity has (real or anticipated) epistemic implications; it can be ex-
ploited for categorizing and distinguishing objects from background. In an an-
ticipatory framework, since the activity level of schemas depends on their pre-
dictions, objects and categories are defined by the typical, coherent patterns of
(expected) transformations under a given set of agent’s actions. For example,
in [21] it is investigated how to build action → effect sensorimotor schemas
through interaction with a simple environment. Moreover, the agent interac-



Fig. 5. The schemas-based architecture of the praying mantis in [47]

tively enlarges its ontology by learning new objects (called synthetic items), and
this in turn permits to learn incrementally new abilities and competences.

AKSL has been used for categorization, too. In [48] we have demonstrated
how to develop perceptual categories (such as different types of insects) and ab-
stract categories (such as two roles played by those insects, predators and preys),
on the basis of the theory of perceptual symbol systems [7]. Shortly, the agent
learns to activate the most relevant schemas, specialized for dealing with fea-
tures of the entities (such as color and size) and is able to track, follow or escape
the entities by means of the dynamics of collaboration and competition among
the schemas. The specific novelty of AKSL comes from the possibility to evolve
energetic links among schemas in an hebbian-like way. In such a way ‘clusters’
of active schemas emerge during interaction with a given entity (say insect one
or predator) behave as simulators in the sense of [7]. They can then generate a
simulation of categories of objects or events by rehearsing and priming the as-
sociated schemas, even in absence of environmental cues. Thanks to simulative
capabilities, specific runs of a simulator reenact the multimodal experience of a
category, while adapting to the current situation.

4.3 Simulation of Future Behavior

Simulative theories of cognition [7, 26, 28] suggest that by rehearsing the motor
programs for interacting with an object an agent can anticipate the sensorial
stimuli it will receive and simulate the consequences of its motor commands one
or many steps beyond current time. Recently several neuroscientists [20, 41] pro-
posed that the cerebellum and the basal ganglia could create a loop permitting



to simulate and select multiple alternative courses of actions, providing neural
support for these theories.

Simulation permits to realize multiple functionalities. Some of them are re-
lated to the immediate control of action: for example, actual stimuli can be
replaced when the sensors are unavailable or unreliable [19]. More complex and
future-oriented capabilities are possible, too. The alternative courses of events
can be evaluated before acting, for example with a somatic marker mechanism
[15]: if the sensory predictions have already been experienced and had been cate-
gorized as negative, the schemas generating them can be stopped by a ‘command
from the future’ (see Fig. 6). A simulated exploration of the environment can
also be exploited for selecting a plan: the effects of several competing plans can
be produced off-line, and their expected sensory consequences evaluated against
actual or expected drives/goals. Neuroscientific evidence indicates that reward
prediction is used for selecting, for example, a path in a maze [58].

Fig. 6. Simulation and Long Term Effects. The long term effects of schemas are pre-
dicted, and the expected states evaluated. This mechanism can be used for excit-
ing/inhibiting the schemas depending on their long-term effects. If the long-term effects
of several schemas are generated and compared, this mechanism can also be used for
selecting among alternative courses of actions (simulative planning).

Simulative capabilities have been used in cognitive robotics, too. For ex-
ample, in [25, 68] internal simulation of the sensory consequences of multiple
possible motor actions is used to perform robust planning in the presence of
noise. Similarly, in [16] a simulative process is used for checking in advance if
the selected behavior will cause problems in the future. This method permits to
avoid the costs of performing complete planning, since only the usual behavior
path is checked in anticipation. Simulative capabilities have also been used in
social tasks, such as imitation, joint attention, plan recognition, perspective tak-
ing, prediction of intent, etc.; for example, the HAMMER architecture has been
used for modeling all these aspects [18, 17].

Schemas in AKSL, if used in the generation mode already simulate few steps
in the future for the sake of predicting the next sensory stimuli. If a prediction of
the long-term effects of the agent’s actions is instead needed, they can be used in
simulation mode. Running schemas in simulation permits to realize several novel
functionalities, such as realizing a ‘somatic marker’ mechanism, and simulative
planning. Up to the moment we have only conducted preliminary experiments
on these topics; in our future work we plan to continue investigating them.



4.4 Grounding

Since schemas can be run in simulation, the agent is able to self-generate sensory
information that would be provided by the environment as a consequence of its
actions. This means that not only actually performed actions provide an epis-
temic access to the environment, but also simulated ones; as a consequence, not
only experienced objects and events can be grounded, but also these ‘virtually’
experienced via simulated interaction. In [29], for example, internal simulation
of possible trajectories is used for grounding concepts related to navigation; for
example, distance from obstacles is grounded and estimated by running sim-
ulations until they encounter the obstacle. Dead-ends are recognized through
simulated obstacle avoidance, while passages are grounded in successfully termi-
nated simulations of navigation.

In the schema-based framework proposed by [55] expectations about the
sensorimotor flow are used instead for grounding the meaning of words and
sentences in natural language. Words for perceptual features are grounded into
sensory information; for example, ‘red’ is grounded in some (expected) values
of the robot’s sensors. More complex attributes are grounded thanks to (actual
and potential) actions. Concepts for objects which are for example reachable
or graspable are grounded by schemas which regulate actual behavior and at
the same time encode predictions of the consequences of expected interaction.
For example, the meaning of ‘sponge’ is the set of expected consequences of
own actions over a sponge (e.g. the anticipated softness) which constitutes the
grounding of the word.

In [50] AKSL has been used for designing a 2-layered architecture, corre-
sponding to the two systems for automatic and willed control of action in [46].
The lower layer, which is called sensorimotor, is very similar to the already pre-
sented architecture of the praying mantis, but includes schemas for navigating in
a simulated house. The higher layer, which is called deliberative, includes instead
declarative knowledge (beliefs and goals states) and pre-compiled sequences of
schemas (plans) for navigating the house scenario; this layer is used for rea-
soning. One novelty of this system is that beliefs are dynamically added to the
deliberative layer on the basis of how schemas perform in the sensorimotor layer.
For example, the belief the door is open is added when the schema(s) for tra-
versing the door is being successful, or is expected to be successful. Not only
actual actions, but also simulated ones have been used for forming beliefs: in
this case schemas have been used in the simulation mode. The rationale is that
‘I can believe that the door is open since I expect that, if I try to traverse it, my
attempt will succeed’ (I also have to assume that the context for acting will be
appropriate; for example, I have to start the action in front of the door). The
system can also perform explicit epistemic actions (for example in order to check
if a belief is true). By exploiting the same machinery that serves for building up
the belief x, I can know under which conditions I will come to believe x by using
counterfactual reasoning (e.g., what do I have to do in order to know whether
or not the door is open?). We have argued that beliefs which are built in this



way are grounded, and their verofunctional value can be verified or falsified on
the basis of success or failure of schemas in the sensorimotor layer9.

4.5 Hierarchical Control of Action

Several hierarchical architectures exist in literature for action control and ori-
enting of attention [18, 27] in which schemas that include representations at
different level of abstraction are used. We have used AKSL for hierarchical con-
trol is the above mentioned 2-layered architecture. Plans in the deliberative layer
are simply pre-compiled sequences of schemas. If a plan is selected by reasoning,
it influences the dynamics of the sensorimotor layer by triggering schemas in
sequence, much in the way drives do. Depending on the amount of resources
assigned to the deliberative layer (and to plans), this influence can constrain
more or less the behavior of the agent.

Another example of use of AKSL for hierarchical control is the architecture
for visual search in [51]. Similarly to ‘pandemonium’ models [59], schemas at
the higher layers encode increasingly abstract representations and expectations.
They learn to predict the activity level of those at the lower layers, and expecta-
tions produced at the high level canalize in a top-down way search at the lower
level, while bottom-up error signals serve mainly to confirm or disconfirm concur-
rent running hypotheses. Empirical evidence exist for a hierarchical organization
of the visual apparatus; a comprehensive theoretical framework and implemen-
tation is predictive coding [54]. This approach is also consistent with simulative
theories of cognition. According to Grush [26], simulations can nest to produce
increasingly abstract levels of description, in which the criteria for ‘matching’ are
increasingly distant from perceptual matching, although they remain grounded
on (actual or simulated) sensorimotor interaction.

5 Conclusions

AKSL permits to design and implement anticipatory schema-based architectures,
and anticipation plays a crucial role in realizing several functionalities. For exam-
ple, action selection is influenced by the anticipatory capabilities of the schemas,
and in particular of their forward models. One of the elements for assigning ac-
tivity level to a schema is its accuracy in predicting the next sensory input in
case one pattern of actions is selected. Attention has an anticipatory component,
too: predictions generated by the forward models permit to orient attention to-
ward the expected position of entities such as a prey to detect, or toward parts
of the environment in which the agent expects to find information relevant for its
current task. Category formation depends on anticipation, too, and in particular
by expectations generated by several schemas at once. Schemas specialized for
features of the same entity are likely to have coordinated patterns of prediction

9 Some beliefs are about other beliefs and not about stimuli. In all cases, however, a
relation (direct or indirect) can be identified with the sensorimotor layer.



and for this reason can evolve energetic links in an hebbian-like way. Categories
thus emerge as clusters of schemas which are expected to be more active during
interaction with the same entities. Simulative capabilities, that are based on the
substitution of actual stimuli with self-generated expectations, permit a number
of other functionalities, such as generating and comparing alternative courses of
events on the basis of their long-term effects, or grounding concepts on the basis
of self-generating sensory stimuli. Lastly, in designing hierarchical architectures,
an interplay of top-down and bottom-up signals are used which convey sensory
expectations and prediction errors.

Anticipation is thus crucially involved in several functions, from simplest to
more complex ones. But is it really advantageous to anticipate in all circum-
stances? Running the forward models, and especially using schemas in simula-
tion mode, is very costly in terms of time and computational resources, and the
adaptive advantage of predicting the future could be lost is this means less re-
sponsiveness to the contingencies of the environment. We have conducted several
preliminary experiments (reported in [47, 48]) and compared schema-based mod-
els having anticipatory and reactive strategies (i.e. without the forward models)
in several tasks. We have found a significant adaptive advantage of anticipatory
strategies when the agent has to deal with complex and dynamical environments
offering multiple possibilities for action, while this could be not the case if only
simpler tasks are required to the agent; see also the experiments reported in [35].

These experiments seem to indicate that a selective pressure for develop-
ing anticipatory capabilities, and consequently using anticipation as a ‘lever’ to
develop increasingly complex functionalities, could be the increased level of com-
plexity and dynamicity of the environment. More anticipation also permits an
agent to deal successfully with more drives and motivations, since it can allo-
cate attentive resources and orient its behavior by taking into account present
but also future needs. In turn, more motivations and more anticipation make
the environment of the agent increasingly complex, and thus demand for even
more anticipatory capabilities; for a discussion, see [52]. Of course, it is an open
challenge to understand which is the level of complexity and dynamicity of the
environment which makes anticipation advantageous, and for this reason we plan
to continue using AKSL in the future in a number of simulations comparing re-
active and anticipatory strategies.
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