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Abstract. We present a schema-based agent architecture which is in-
spired by an ethological model of the praying mantis. It includes an inner
state, perceptual and motor schemas, several routines, a fovea and a mo-
tor. We describe the design and implementation of the architecture and
we use it for comparing two models: the former uses reactive, stimulus-
response schemas; the latter involves also forward models, which are used
by the schemas for generating predictions. Our results show an advantage
in using anticipatory components inside the schemas1.

1 Introduction

Schemas [1] are basic functional units, permitting to investigate animal behavior
without explicit assumptions about the physiological and neurophysiological re-
alization and localization of the functions2. The model we propose is inspired by
an ethological model of the praying mantis described in [2] but it is focused on
anticipatory capabilities. It includes two kinds of schemas: perceptual schemas
and motor schemas. Some schemas also are closely related (e.g. detect predator
and escape): we call them coupled perceptual-motor schemas. In the rest of
the paper we will call schemas the functional units, and behaviors the functions
they realize, since many schemas can realize the same behavior.

Schema based design has three advantages: (1) it permits to integrate many
competing behaviors in a coherent whole. While the animal has a large repertoire
of behaviors (realized by its schemas), only few of them are useful in a given
context. For this reason, the activity level of the schema represents its relevance
[1, 8, 18]. The activity level of a perceptual schema represents a confidence level
that a certain entity, encoded in the schema, is or is expected to be present. The
activity level of a motor schema represents a confidence level that the behavior
encoded in the schema is both applicable and useful in the current situation. (2)
it affords distributed control: there is not a central executor, but the behavior
of the animal emerges from the competition and cooperation of all the active
schemas. (3) it permits to integrate in an unique framework data-driven, bottom-
up processes, such as the influence of stimuli on the behavior; and hypothesis-
driven, top-down processes, such as forming, maintaining and testing a coherent
interpretation of the stimuli.
1 This work is supported by the EU project MindRACES, FP6-511931.
2 For an hypothesis of implementation of the schemas in the nervous system, see the

notion of command neurons in neuroethology [17] or [1].



In the rest of the paper we present our schema based agent model and we
test it in a simulated environment, with two goals: (1) to evaluate its adaptivity
in a dynamic environment, i.e. its capability to select the appropriate schemas
for satisfying its drives; (2) to compare anticipatory vs. reactive strategies.

Fig. 1. The Components of the Mantis Architecture

Fig. 1 shows the main components of the model: the Inner State (the
drives); the Behavior Repertoire (Perceptual and Motor Schemas); the Rou-
tines (Visual, Motor and Proprioceptive Routines); the Actuators (the Fovea
and Motor Controllers), that we introduce in the next Section.

1.1 Functional Principles of the Architecture

According to the previous definition, schemas are concurrent processes, each one
encapsulating the procedures to realize a behavior. In order to be effective and
adaptive, the agent has to adopt the most relevant schemas: in our implemen-
tation, this depends on schemas activity level. In our parallel architecture the
activity level of each component (including schemas) determines the priority of
its thread of execution; activity level thus represents the “power and influence”
of a schema even in computational terms. As we will see, a more active per-
ceptual schema can process the visual input more quickly and a more active
motor schema can send more commands to the motor controller. Routines have
a variable priority, too, reflecting their relevance for the schemas which exploit
them: for example, in some situations color-detectors can be very relevant and
size-detectors can be less. The activity level of schemas is set according to three
parameters: absolute relevance, contextual relevance and predictive success.



The absolute relevance represents how much a schema is relevant by default;
for example, detect predator is more relevant in absolute than avoid obstacle for a
living creature, even if sometimes the latter is more contextually relevant. If the
animal has a repertoire of schemas for the same behavior (e.g. many specialized
detect prey schemas, e.g. for gray or red, big or small preys), some of them are
more relevant in absolute, e.g. because gray preys are more common. Ceteris
paribus, more absolutely relevant schemas have higher activation levels.

The contextual relevance represents how much the schema is relevant in the
current situation. If a prey is detected and the mantis is hungry, chase is very
relevant; but it is much less relevant if there is no prey or if the mantis is not
hungry. The contextual relevance is not centrally calculated, but emerges from
the dynamics of the components of the distributed architecture, in two ways.
The first way is preconditions matching; for example, chase has as a precondition
the presence of a prey (or, to be more precise, an high activity level of detect
prey). Preconditions are not necessary but facilitating conditions: they have
fuzzy values, so they can match even partially and provide graded reinforce (the
more the match, the more activation is gained by the schema). The second way
is exploiting the links between the components, affording spreading activation.
Our design methodology includes both pre-designed links (stroke edges in Fig. 1)
and evolved ones. Thanks to the pre-designed links, drives spread activation to
related perceptual and motor schemas (e.g. hunger to detect prey), and coupled
perceptual-motor schemas (e.g. detect prey and chase) spread activation to each
other. As an emergent result of the dynamics involving both kinds of links, the
most relevant schemas become more active in a context-sensitive way.

The predictive success also regulates schemas activation. As we will see, the
schemas incorporate a predictive component (a forward model) which generates
expectations; schemas generating accurate expectations gain activation. The ra-
tionale behind this principle is that schemas which predict well are “well at-
tuned” with the current situation; for example, if detect prey is activated by
error by a big, gray entity (assuming that some preys are gray in the environ-
ment), the schema will try to track the prey (by moving the fovea) according to
its forward model, i.e. as a moving object. If the object is not a prey but, say,
a stone, its tracking activity will fail (because the entity does not move). The
detect prey schema is not well attuned with the environment, while the detect
obstacle is: in fact, its forward model predicts a static object. While in the be-
ginning detect obstacle could be not very active, as long as its forward model
predicts well it becomes more and more active and overwhelms detect prey3.

Schemas activation is also regulated by a general architectural principle.
There is a limited amount of activation (i.e. computational resources) shared
by all the components. All the components thus compete for limited resources
and active schemas prevent other ones to gain more activation4.

3 In the current implementation expectations are treated as preconditions only in the
next schema cycle; if partially matched, they provide it graded activation.

4 This is similar to having lateral inhibition between the competing components, but
the total amount of activation can be manipulated (for example by the drives).



2 The Four Components of the Mantis Model

Here we introduce the four components of the mantis model: the Inner State,
the Schemas, the Routines and the Actuators.

2.1 The Inner State

The inner state includes four drives: hunger, fear, sex drive and fatigue, which
have inhibitory links (dashed edges in Fig. 1). All the drives except fear are reg-
ulated by an endogenous factor, a “biological clock”, creating an habit system:
the mantis routinely needs food and repair and spreads activation to the related
schemas for fulfilling these needs (stroke edges in Fig. 1); of course schemas can
operate only if there are appropriate environmental conditions. The drives also
receive exogenous influences, i.e. the activity level of the related schemas; for
example, if detect predator is very active, fear grows up. There is thus an acti-
vation loop between internal drives and schemas. In the current implementation
the mantis do not starve and is not really harmed by predators; on the contrary,
fatigue has a real effect: it diminishes the overall amount of activation available.

2.2 The Schemas

The schemas (perceptual and motor) are the main components of the model. As
shown in Fig. 1, many schemas realize the same behavior; as an example, there
are detect prey schemas specialized for gray or red preys, or for big or small ones.

The Perceptual Schemas The model includes five kinds of perceptual schemas:
detect prey, detect predator, detect mate, detect hiding place, detect obstacle. Each
perceptual schema has three components: a detector, a controller and a forward
model. The main role of the detector is to acquire relevant input (preconditions)
from the the fovea. The main role of the controller is to send motor commands
to the fovea: in this way the mantis is able to orient its attention. Perceptual
schemas are not passive data processing structure, but active ways for “navigat-
ing” the visual field [19]. The main role of the forward model is anticipate visual
stimuli, i.e. the activation level of appropriate visual routines.

The perceptual schemas become more active if the kind of stimuli they
process are indeed present in the environment. In our implementation, the detec-
tor has (graded) preconditions which are associated to visual routines; when the
relevant visual routines are active, the schema gains activation. For example, in
the mantis environment preys are gray; if the gray-detector visual routine is very
active, the detect prey schema gains activation, too. The perceptual schemas also
run their forward models: schemas which predict well gain activation.

The perceptual schemas receive activation from the inner states, too; a fearful
mantis will search for predators even in absence of real danger. An “hallucina-
tory” phenomenon is in play: when a mantis is fearful, predators appear closer,
moving entities appear to be predators (and get it even more fearful). In the long



run hallucinations are ruled out: since the perceptual schemas also feedback on
the inner states, the lack of dangerous signs (and the predictive errors of detect
predator) will make the mantis less fearful.

Active perceptual schemas have two ways to induce top-down pressures.
Firstly, they send motor commands to the fovea, orienting it toward relevant
entities; more active schemas send commands with higher fire rate. By orienting
the fovea, the schemas are able to partially determine their next input (they
have an active vision, [19]). In an anticipatory framework, this functionality is
mainly used to test the predictions of the forward models: for example, tracking
a moving object is a way to acquire new stimuli in order to test the expecta-
tions. For this reason, the schemas orient the fovea towards the more informative
points, i.e. those able to determine whether or not their predictions are correct.
Secondly, they spread activation to the related visual routines. For example, de-
tect prey schema activates the gray-detector visual routine, even in absence of
real stimuli. This induces an “hallucinated” state (like a fake gray entity) which
is close to visual imagery in [16]). As in the previous case, without real stimuli
the hallucinated state lasts shortly.

As an effect of top-down pressures, the same stimulus is interpreted in differ-
ent ways depending on the active perceptual schemas. For example, if a prey and
an obstacle have the same color (say gray) and the gray-detector is very active,
both detect prey and detect obstacle detect it. However, the more active schema
detects it faster and takes controls of the fovea: if detect prey is more active, it
is likely that the fovea will try to track it as a moving object (the detect obstacle
schema, on the contrary, would have monitored it as a static object). Of course,
more active perceptual schemas activate more their related motor schema, too.

The Motor Schemas The model includes six motor schemas: stay in path (the
default behavior), chase, escape, mate, hide, avoid obstacle. They have three com-
ponents: a detector, which sets the value of the preconditions by monitoring the
state of the perceptual schemas (e.g. detect prey is very active); a controller (an
inverse model), which send commands to the motor (e.g. move left); and a for-
ward model. The motor schemas receive activation from the related perceptual
schemas in the form of matched preconditions: a very active detect prey activates
chase (which learns to interpret it as: “there is a prey”). The motor schemas
receive also activation from the inner states: a fearful mantis activates its motor
routines for escaping even in absence of real danger; as in the case of percep-
tual routines, they can only remain active if the right stimuli are in place. The
main role of the controller is to send commands to the motor. The main role of
the forward model is to produce expectations about perceptual stimuli (to be
matched with sensed stimuli, including vision and proprioception).

Coupled Perceptual-Motor Schemas Fig. 2 shows the pseudo-closed loop
between controllers and forward models in a coupled perceptual-motor schema.
The controllers send a control signal to the actuators, which integrate them and
act accordingly; on the same time, an efference copy of the (final) command



signal is sent to the forward models of all the schemas, which compute the next
expected input. The dashed lines indicate that a feedback signal is received (via
visual or proprioceptive routines); the dashed circles indicate that there is a
comparison between the actual input stimulus and the expected stimulus. The
degree of (mis)match between actual and expected stimulus has two functions:
(1) Adjustment of Control : the predicted signal can compensate time delays, filter
or replace missing or unreliable stimuli; see [7] for a comparison with Kalman
filtering; (2) Schema Selection: schemas which predict well gain activation.

Fig. 2. A coupled perceptual-motor schema: Detect Prey and Chase

Patterns of Actions Some schemas include many concatenated actions (in a
way similar to [4]); e.g. detect prey and chase have the following structure:

DETECT PREY: IF red AND moving THEN find_prey

(loop) ELSE IF prey_found THEN maintain_prey

ELSE IF prey_lost THEN re_find_prey

ELSE IF prey_maintained THEN maintain_prey

CHASE: IF prey_found THEN approach_prey

(loop) ELSE IF prey_close THEN grab_prey

ELSE IF prey_in_contact THEN eat_prey

Schemas are always-looping procedures; for each cycle, depending on precondi-
tions, an action is selected. This means that actions can be executed in different
sequences, in parallel and also skipped: for example, re find prey is only needed
when a prey is lost. Coupled perceptual-motor schema can realize complex strate-
gies by coordinating their patterns of actions. Fig. 3 illustrates the example of
a chasing behavior involving two schemas, detect prey and chase.

In the beginning, only detect prey is active, because some of its preconditions
are true (e.g. the visual routines red-detector and movement-detector are highly
active). Detect prey both activates its first action (find prey, which sends com-
mands to the fovea) and spreads activation to chase. The first applicable action



Fig. 3. Complex patterns of actions within a coupled perceptual-motor schema

of chase (approach prey) can only start when find prey succeeds; subsequently,
the actions of the two schemas continue in a coordinated way: as long as the per-
ceptual schema succeeds in finding and maintaining the prey, the motor schema
tries to reach, grab and eat it.

Interaction-Oriented Representations It is worth noting that inside the
forward models schemas process information in an interaction-oriented format,
and the mantis only has deictic representations. For example, detect prey is only
able to represent “the prey I am looking at”. However, even without storing extra
information, the architecture implements a certain kind of object permanence.
Since schemas activation decay gracefully, it is highly probable that schemas
which where very active remain quite active even if the stimulus disappears for
a while. This effect is magnified by the presence of drives, which have a stabi-
lizing effect on behavior: since they continue to fuel schemas for a given span
of time, drives can be seen as task-specific memories, introducing commit-
ment without central control. Moreover, since schemas act according to their
predictive models, they remain attuned with relevant entities by actively search-
ing them. For example, during a successful chase detect prey and chase gain
activation thanks to the success of their predictions. On the contrary, failure in
finding, maintaining or reaching a prey weakens the schemas and eventually the
chase ends, if another behavior becomes more active. This example shows how, in
stable enough environments, deictic representations and agent-environment en-
gagement based on predictions can realize (at least a limited version of) complex
functionalities such as maintaining objects permanence.

2.3 The Routines

The perceptual schemas do not receive raw input from the fovea: a number of
preprocessing units, the visual routines, filter fovea information (although with
different priority). In the current implementation there are several routines of



each kind, such as color-detectors specialized for detecting different colors, as well
as for colors, sizes, shapes and for detecting and tracking moving entities. The
activation level of the visual routine directly encodes the presence of absence
of associate entities; for example, an active red-detector encodes directly the
presence of red entities as provided by the 3D engine, without learning. In a
similar way there are motor routines, commanding the fovea and the motors,
and proprioceptive routines, providing feedback information from the motors.

2.4 The Actuators: Motor and Fovea Controllers

The actuators receive commands from the motor routines and perform command
fusion. Differently from many systems in literature (see [5] for a review), in
which many schemas can be partially active at once but only one is selected for
commanding the actuators, in this model each active schema sends its motor
command. Since we adopted a parallel architecture in which schemas can have
different priority, commands are sent asynchronously and with different fire rates.
Fire rate encodes relevance: more active (and thus more relevant) schemas are
able to send more commands to the actuators and to influence it more.

Command Fusion As already discussed, selection is needed both for adopting
the most appropriate schema(s) for realizing the same behavior, and for adopting
the most appropriate behavior. As an example of the first case, consider that
there can be many detect prey schemas which are specialized e.g. for small and
quick ones or for very big and red ones; in order to realize prey detection, often
many detect prey schemas are needed, as in the “mixture of experts” model [13].
The case is similar for motor schemas. As an example of the second case, consider
that the agent has a repertoire of behaviors and has to arbitrate between them
(e.g. chase vs. escape), as long as it can not fulfill all them together.

In both cases, the fuzzy based command fusion mechanism we adopted [15]
produces the course of actions accounting for more drives and stimuli. Strictly
speaking, there is no actual “selection” since all the active schemas send their
commands to the actuators, although with different fire rate; the course of action
results from the graded contribute of all the active schemas. For example, a
detect prey behavior is often realized not by a single detect prey schema, but
integrating the graded contribute of many ones. The rationale is that exemplars
of preys do not fall into clear cut categories (which prototypes are encoded in the
schemas), such as “quick” or “slow” so it is often necessary to fuse the commands
of the two schemas specialized for quick and slow preys. As an example, consider
that a moving prey can match the preconditions of both schemas, although with
different degrees of matching; thus, the degree influence they have on the fovea
depends on the degree of membership of the prey to their prototype (expressed
in fuzzy terms in the current implementation).

Mixed courses of actions can also emerge from the contribute of schemas
realizing different behaviors. As an example, Fig. 4 shows the activation levels
of two schemas, stay in path (black boxes) and avoid obstacle (white boxes),



during obstacle avoidance. Both schemas are involved, with different priorities
over time, as long as they can both be satisfied together. Note that the trajectory
and the turning points are not preplanned but dynamically emerge depending
on the size of the obstacle and the initial direction of the agent.

Exploitation also happens when the results of a schema are exploited by
another behavior. For example, a mantis which is escaping can activate an hide
schema as a part of the escaping strategy; the latter schema is not selected per
se, but activated and exploited by the former behavior.

Fig. 4. Evolution over time of the activation of the schemas during obstacle avoidance.

Constructive Perception As discussed in the introduction, schemas permit
to model both bottom-up and top-down phenomena, for example in perception.
A classic experiment [25] shows that human attention varies with the nature of
the task. When there is not an explicit task specification, bottom-up processes
are mainly responsible for determining the salience of objects in the scene [12].
On the contrary, if there is an explicit task specification, top-down and volitional
processes frame the scene and drive attention to the task-specific relevant objects
in the scene [9]. We call this process constructive perception.

In this framework perception is distinct from sensing: the active perceptual
schemas represent multiple concurrent perceptual hypotheses which compete for
being accepted ; they are prioritized according to the accuracy of their precon-
ditions and predictions, i.e. how much their requirements are compatible with
the actual perception. Schemas also actively drive perceptual exploration of the
environment by orienting the fovea. The constructive process does not only in-
fluence stimuli categorization (such as prey vs. obstacle), but also behavior selec-
tion. An example of goal oriented constructive perception can clarify the point:
if the mantis is not hungry and is escaping, it can approach a prey as an ob-
stacle and activate avoid obstacle. Constructive perception is thus the abductive
process of producing and testing hypotheses: the most active schemas drive sub-
sequent actions (i.e. chase a prey or avoid an obstacle), active perception (where
to orient the fovea) and visual imagery (to which visual routines give priority).
Indeed, information is selected and it serves to confirm or disconfirm the running
hypotheses, not to mirror the environment.

As discussed above, the behavioral and perceptual spaces of the mantis are
also shaped by its internal drives. Drives provide activation to the behaviors,
which can thus perform more epistemic actions, predict more often and influence



more the fovea. An hungry mantis is much more likely to interpret ambiguous
evidences as food; more precisely, an hungry mantis puts much more resources
in classifying an evidence either as food or not food (instead of e.g. shelter or
not shelter) even if the affordances of the object are the same.

3 Implementation and Testing

We implemented the mantis model by using the cognitive modeling framework
AKIRA [11, 21], and the 3-D engine Irrlicht [10], having realistic physics. Our
aim is to investigate if our architecture fulfills adaptively its drives in a dynamic
environment. We followed the above described architectural design, inspired by
the ethological model reported in [2]; we also set up two learning phases. In the
former the components of each schema, controllers (inverse models) and forward
models, and the parameters such as the schemas absolute relevance or the weight
of the edges, were first learned individually in a simple environment having a
limited number of features (e.g. only preys or predators). In the latter all the
schemas were integrated in an unique architecture. Since the framework puts
schemas in competition, adding new behaviors did not waste the performance of
old ones; the challenge is now to coordinate them in a complex environment. In
this phase the inverse and forward models did not learn any more, but schemas
which were active in the same span of time evolved energetic links (in addition
to those shown in Fig. 1) with hebbian learning [15]. Schemas which were not
active in a given context learned to spread energy to more successful ones, too,
with a mechanism described in [20]. The rationale is that the energy has to be
conveyed in a context-sensitive way from less to more relevant schemas5.

Each schema is implemented by using a single thread which activation is
set according to the principles explained above: absolute relevance (learned in
the first phase), spreading activation (via edges learned in both phases) and
degree of match of its preconditions and expectations. All the representational
elements (activation, preconditions and expectations) have fuzzy values: in this
way it is possible to compare all them and obtain graded results. For example,
a very active internal drive (hunger) provides high match with the quite hungry
precondition of detect prey. Or a poorly active detect movement routine provides
low match for the expectation prey moving produced by the forward model of
detect prey. Drives, inverse and forward models were implemented by using both
Fuzzy Cognitive Maps and Neural Networks [15], with minor differences. Drives
values vary according to their links, their “biological clock” and the input they
receive from the active schemas. In turn, the values of the drives become input
for the schemas, as described above. Even the motor commands have the form
of fuzzy statements such as turn left and a fuzzy controller is responsible for
command fusion, as in [20]. A motor routine (compensation) compensates the
5 The main reason of having two phases is that it is very complex to learn many

behaviors together. For example, the prediction error of the forward model can be
interpreted either as scarce relevance of the schema or as poorly accurate forward
model. Learning each forward model individually permits to disambiguate this signal.



movements of the agent, permitting to maintain the right orientation of the fovea
during movement.

Related Literature Similar models in literature are MOSAIC [24] and HAM-
MER [6], implementing coupled inverse and forward models for motor control
and basing schema selection on predictive success; schema architectures [1, 2]
and the “mixture of experts” model [13]. However, we use a parallel architecture
in which computational resources (such as speed) encode “responsibility”; com-
mand fusion is asynchronous and based on fuzzy logic. Our model also includes
hebbian learning and spreading activation between the schemas.

Anticipatory vs. Reactive Systems We compared the performance of two
variants of the mantis model (MANTIS and MANTIS-R) in a complex environ-
ment including obstacles, preys, predators and hiding places. The first model
(MANTIS) is the one we have described throughout the paper. The second
model (MANTIS-R) lacks the forward models. Obviously, in this case predictive
success can not be used for allocating activation; only absolute and contextual
relevance are used. Some anticipatory capabilities are however implicitly present
in MANTIS-R, too: for example, a perceptual schema spreading activation to
a visual routine implicitly assumes that its results will be useful; and this pre-
diction is grounded on the history of their past interactions. However, endowing
schemas with a predictive component (a forward model) which produces explicit
expectations (as in MANTIS) permits also to use predictive error for action
control and schema selection.

The two agents dwell separately in the same environment with the same
inner states. Drives satisfaction was used as success metric: each agent had to
satisfy its drives, i.e. to keep their values close to zero. Moving increases fatigue,
while resting in hiding places lowers it; eating preys lowers hunger ; the presence
of close predators increases fear, while their absence lowers it; mating lowers
sex drive. Four analysis of variance (ANOVA) with mean fatigue, fear, hunger
and sex drive satisfaction (calculated as 1−mean drive value, in 100 real-time,
3-minutes simulations) as dependent variables were carried out.

DRIVE MANTIS MANTIS-R

Fatigue 0,845 0,657
Fear 0,812 0,665
Hunger 0,758 0,703
Sex Drive 0,891 0,793

Average 0,826 0,704
Table 1. MANTIS vs. MANTIS-R (mean satisfaction)

Tab. 1 shows the results. The main effect is significant for all drives (F (1, 99) =
130, 53; p <, 00001 for fatigue; F (1, 99) = 68, 01; p <, 00001 for fear ; F (1, 99) =



24, 82; p <, 00001 for hunger ; F (1, 99) = 50, 65; p <, 00001 for sex drive): in all
cases, MANTIS satisfies its drives better than MANTIS-R. Our results indicate
that in a scenario involving multiple entities and drives it is advantageous to
exploit anticipatory representations, and this advantage overwhelms the cost to
maintain and to run them in real time. However, our results can be considered
preliminary: further investigation is needed for understanding at which level of
environmental complexity anticipatory strategies become advantageous.

4 Conclusions and Further Work

We have presented a schema based agent architecture; illustrated its components
and its action selection strategy; tested its behavior in a complex environment,
also comparing it with a simpler model only having implicit anticipatory capa-
bilities in an adaptive drives satisfaction task. Our results show that there is a
significant advantages in using explicit expectations, produced online by forward
models, for action control and schemas selection. Recently many authors [3, 7,
24] have provided evidences for a crucial role of anticipations and forward models
in these and other cognitive functions, which we are now investigating.

In our architecture the top-down influences introduced by drives follow the
ideomotor principle [14], arguing that action planning takes place in terms of
anticipated features of the intended goal. For example, the drive hunger endoge-
nously activates related perceptual and motor schemas (detect prey and chase),
which in turn pre-activate visual and motor routines related to preys and pray-
chasing. In [20] we have also show that this mechanism can also realize more
complex goal states such as search the red prey. We are now investigating how to
extend this principle to realize decoupled, off-line processing, such as planning
by off-line producing, evaluating and comparing hypothetical, alternative goal
states and courses of events, even if new and never experimented before.

In our architecture an high activation level of a perceptual schema repre-
sents the (actual or expected) presence of related entities, and motor schemas
can exploit this information; in a similar way, active visual routines are exploited
as preconditions by the perceptual schemas. We are now investigating how to
extend this principle to schemas organized hierarchically; [20] describes the pre-
liminary implementation of a layered architecture including feature-specific and
increasingly complex concept-specific schemas, in which the activity of schemas
in the lower layers is interpreted as an information by schemas in the higher
layers, and in which complex schemas exploit simpler ones which realize some
of their preconditions or expectations. Schemas in the higher layers are special-
ized for satisfying the drives of the agent; on the contrary, [22], also based on
[13], shows that if hierarchical systems are evolved for a single task they do not
specialize in a feature- or concept-specific way.
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