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Executive Summary 

Autonomous cognitive systems living and interacting between them and with us in our own world must be designed to be anticipatory. Even more than this, brains and minds must be understood as anticipatory devices that continuously predict the future at different time scales and for different cognitive functions. Even abstraction and detachment from the external world, the hallmark of human cognition, are to be understood within an anticipatory framework.

To meet this challenge, the goal of MindRACES has been to investigate different anticipatory cognitive mechanisms and architectures in order to build cognitive systems endowed with the ability to predict the outcome of their actions, to build a model of future events, to control their perception and attention by anticipating future stimuli and to emotionally react to possible future scenarios. Anticipatory behaviours are precisely those behaviours enabled by predictive capabilities.
MindRACES has improved existing cognitive architectures by incorporating missing anticipatory functionalities in them. The performance of these architectures has been tested in the previously identified scenarios. 

Moreover we have designed, implemented and tested in the scenarios cognitive architectures that integrate anticipatory mechanisms from different cognitive function sets. Simulations and real robots have been used both to improve and compare single anticipatory models and to integrate them in the same cognitive architectures.

The set of models, architectures, simulations and robots that have been developed in MindRACES have provided scientific advancements and breakthroughs in the following topics essential for the design of future cognitive systems: learning, attention, action control, goal-directed behaviour, the grounding of symbolic representations in sensorimotor ones, analogical and deliberative reasoning, and, finally, emotions and believability of cognitive systems. 

In this document, the relevance and the problems tackled by MindRACES are illustrated. The progress made and the scientific advancements are summarized. Finally the potential impact of such results is envisioned. 

The anticipatory challenge to artificial cognitive systems

Research and engineering problems

Adaptive cognitive systems need anticipatory behaviours
All cognitive systems have to interact with a real world where things happen over time. The consequences of actions are often not always immediately seen but a cognitive system still needs to react to such consequences. This problem occurs both when the cognitive system itself performs the action and when it reacts to action done by other cognitive systems, either artificial or humans. 

To deal with this kind of problems humans continuously rely on predictions about the future in their everyday life. They always have expectations (correct or not) about the environment they live in and act accordingly. For example, when searching where your keys are, you first try to predict where you could have put them and after that go there and try to find them. This process is quite different and much more efficient that the purely reactive case of wandering around and pick up the key when they are seen. 

More precisely, actions must be controlled by the anticipated future state of the world rather than on immediate perception. A similar problem occurs in any sensory system since processing of sensory information takes time. Once the sensory state has been recognized, it is no longer valid but reflects the world as it looked a short while ago. This has important consequences for any cognitive systems since it implies that any reaction will be a reaction to a previous state of the world. In general, there can be no such thing as an immediate reaction except in very simple cases. Even a simple task such as looking at a moving object requires that the system can anticipate the current location of the object. 

Given the extent to which humans rely on prediction, MindRACES’ challenge has been to explore prediction and anticipatory behaviors as central to artificial cognitive systems as well.
More precisely, the MindRACES project has explored – both from a theoretical and computational perspective – how anticipation permits to develop a number of sensorimotor and higher-level cognitive capabilities, including navigation, attention, planning, deliberation and affective interaction. Integrated agent architectures have been designed and tested both in simulated and real scenarios in which multiple capabilities based on anticipation were required at once. 

Anticipation is not only an essential component of goal-directed action in all its phases (including goal and action selection, planning, motor execution and control), but permits to develop complex cognitive capabilities on the basis of simpler ones, as in the case of simulative and imagery processes that are exploited for planning and means-ends reasoning. 

MindRACES’ results demonstrate that anticipation is a viable unifying principle for the study of cognition in natural and artificial systems.

The relevance of an integrated approach to anticipatory cognitive systems

Many different disciplines aimed at understanding behaviour of human and artificial cognitive systems  ‘locally’ acknowledge that predictive capabilities and anticipatory behaviours are crucial to adapt to a real and dynamic environment. We say locally because anticipation has been invoked from the limited perspectives of researchers focusing on different problems (from low level vision to high level reasoning) without even attempting more comprehensive frameworks capable of providing unifying approaches. In order to overcome this limitation, MindRACES has involved researchers active in disciplines traditionally separated one from the other and adopting mutually inconsistent approaches. On this basis, MindRACES’ most general contribution is relevant for many different scientific perspectives precisely because it has focused on an integrated approach to anticipation in cognition and behaviour at many different level of cognitive complexity. 

For example, the processes underlying attention directed to search targets on the basis of cues, and the processes underlying motor control directed at control reaching of targets in robotic arms, are usually studied in isolation within cognitive sciences. This approach however is strongly limited since in real organisms the function of perception is to gather information for controlling action and, at the same time, action strongly affects what is perceived and attended.  Following this principle ISTC-CNR, UW-COGSCI, LUCS, OFAI and IDSIA have integrated anticipation into the core of agents’ architectures. In fact on one side perception, and the processes of gathering of information, has to be fully oriented to guide future action. On the other, action has to be informed about the potential effects it might produce on perception and, hence, upon action itself in the future. In general, this view is in line with the “embodied paradigm” of cognitive science for which intelligence stems from dynamic circular interactions between brain, body and environment. In practical terms, this gives most of the mechanisms and components used to build architectures a peculiarly anticipatory nature.

Moreover, the integration in the same agent architecture of both sensorimotor and cognitive abilities is one of the most complex challenges for cognitive systems development. From an evolutionary point of view, the former developed first, and then an interesting question is whether (and how) the latter developed from (and are based on) the former. On the basis of this fact, MindRACES has explored the hypothesis that anticipatory capabilities developed for the sake of action control have then been exapted to provide more sophisticated future-oriented capabilities, such as planning and reasoning, that is based on “internal” generation/simulation of alternative possibilities for action (e.g. ISTC-CNR and NOZE). Similarly, NBU and LUCS have developed a cognitive architecture in which anticipatory behaviours based on analogy (a high level predictive mechanism) are based on low-level vision and attentive system.  

Finally, beyond interacting autonomously with the real world, artificial cognitive systems should be able to appropriately interact with humans. Anticipatory emotions are relevant and have been studied in both cases (e.g. ISTC-CNR and IST). However they become even more relevant when the artificial system is a synthetic character or a social robot. In such cases, for the interaction to be successful, the synthetic character’s behaviour must be believable. Although emotions are acknowledged as important in the generation of such believable behaviour, anticipation up to now has had but a secondary role. The MindRACES project showed that anticipation and emotions are tightly connected, and that anticipation has an important role in the design of the “minds” controlling such creatures. 
Founding learning and cognition in anticipation: some examples

Anticipation as a unifying principle has the potential to shed light into multiple aspects of autonomous agents’ behaviour. 

Any learning robot must acquire an anticipatory world model to predict what will happen if the robot executes an action based on its perceived environment. Additionally, it needs the world model to save time in the physical world by planning and running mental experiments to solve problems such as getting reward in response to achieving goals. Hence an anticipatory learning robot displays such enhanced competences.

An anticipatory robot is also endowed with bottom-up attention system components that signal potentially interesting locations where the eye can gather relevant information. This functionality is anticipatory in that it is directed to identify potential locations that might furnish information if foveated in the future. At the same time, a top-down attention component can gather information from visual cues and integrate it in time to memorise potential positions for task-relevant eye’s and arm’s targets. This functionality is anticipatory in that it is directed to identify potential locations of task-related targets relevant for the eye and the arm. Finally, the robot can learn actions-consequences associations and use them to select actions by that the systems desires to achieve. This mode of functioning of the controller is anticipatory in that the arm is not guided on the basis of stimulus-response associations, but rather on the basis of desired anticipated states (goals).

In fact, more generally, anticipation enables goal-directed behaviours that crucially depend on the agent’s ability to select actions on the basis of their expected outcomes, and to monitor them.  Anticipation also increases autonomy, with its levels and degree, which depends on goal-orientedness and in the capability of the agent to detach from current sensorimotor stimuli and for example “imagine“ possible futures for the sake of realizing or avoiding them. 

In addition, MindRACES showed how a simple anticipatory mechanism can generate behaviour perceived as understandable by the user and so increase the believability of human-robot interaction. 

Anticipation and the engineering of artificial cognitive systems



The systems, mechanisms and algorithms developed in MindRACES constitute a sound engineering basis for the design of cognitive system: for example the development, analysis and application of prediction algorithms as well as prediction-based reinforcement learning methods for anticipatory agents and in particular for real world anticipatory robots is an important contribution to the research field of cognitive systems. 

We believe in fact that the type mechanisms researched within MindRACES are necessary for the design of viable cognitive systems. Often in fact there is no reasoning about the most basic and inevitable properties that an autonomous cognitive agent has to exhibit. In the MindRACES project we have shown that anticipation is an inevitable property that has to be included and considered in designing and engineering of any embodied artificial cognitive system that has to rely on sensory input and act in a dynamic environment.

Finally, studying the relation between anticipation, emotion and believability, MindRACES supports aslo the engineering of believable artificial cognitive systems aimed at interacting with human agents.

Progress made

Building anticipatory cognitive embodied systems

MindRACES has approached the construction of anticipatory cognitive systems from multiple perspectives both theoretical and computational.  

From the theoretical point of view the project has deeply explored the philosophical and empirical literatures on anticipation and anticipatory behaviour, and proposed a unified view of anticipatory phenomena as well as design principles for engineering anticipation on artificial systems. The theoretical models of emotions have been specified by using mathematical and logical tools coming from decision theory and applied modal logic (ISTC-CNR). 

Within a common theoretical perspective, MindRACES has adopted different approaches to design and implement several functions based on anticipation, including attention, action selection and control, planning, deliberation, and motivational and emotional regulation of behaviour. Most of these capabilities have been integrated in agent architectures that were tested in simulated scenarios requiring a mix of sensorimotor and cognitive capabilities.

A common principle has been that of building whole architectures in order to explore the constraints and opportunities stemming from the integration of much anticipatory cognitive functionalities. Test of architectures in simulated or real scenarios has allowed an ultimate evaluation of the effectiveness of mechanisms and architectures, and a full appreciation of the opportunities and constraints stemming from an embodied vision of intelligence.

In what follows, the different approaches selected by the partners are briefly summarised.

Some models have been developed with neural networks: this immediately implies using a certain class of mechanisms to implement the aforementioned functionalities, namely mechanisms that are: quantitative and hence sub-symbolic, parallel, distributed, generalising, strongly involving plasticity and learning processes. 

The thread of research by ISTC-CNR aimed at building and studying a whole neural architecture, controlling a robotic camera-arm plant focussed on these specific requirements:

· building an integrated neural architecture capable of controlling a robotic arm on the basis of a camera input

· building bottom-up/top-down attention components of the architecture capable of collecting information needed to guide the arm

· building an arm controller capable of exploiting information gathered by the camera

To anticipate the movement of dynamical object, LUCS has investigated methods that can learn simple models for different dynamical situation. For example, one model is learned for a falling ball while another for the bounce of the same ball. The different models are selected based on the visual context around the dynamic object. An empty context indicates that the fall model should be used while the presence of a surface indicates that the bounce model should be used, This method can automatically learn to  select the relevant contextual cues.

Similar methods can also be used to anticipate the location of a target for reaching. Algorithms that can autonomously learn to reach for a moving object have been developed. The system simultaneously learns both the dynamic of the target object and the inverse kinematics of the arm. The correct coding of sensory and motor information is essential for the success in this kind of tasks.

LUCS have also explored how context can be used in reinforcement learning to select between different strategies in different situations. The methods are similar to those used for anticipation of dynamical objects, but here the anticipation has to do with the expected reward that will be obtained in each context.

Finally, LUCS has developed methods for anticipatory planning in a multi-robot scenario where the actions of each robot must depend on the anticipated behavior of all the other robots. This is an extremely complicated task as the number of possible plans that need to be tested by the system grows very large when all the possible behavior of the other robots are anticipated. Methods that can be used to reduce the complexity of this task have been developed, but this is still a problem that is in need of much further research.

IDSIA’s approach is based on the development and analysis of artificial recurrent neural networks, evolutional methods, reinforcement learning algorithms and the interaction between these areas. All these areas are inspired by biological systems, more precisely neurobiology, and research results have influenced directly the methodology of cognitive systems from the scientific and from the engineering side. 

The main approaches employed by OFAI have been:

(1) The Artificial Immune Network approach. Artificial Immune Systems (short AIS) are part of AI research since the beginning of the nineties, and are defined as computational systems inspired by theoretical immunology and observed immune functions, principles and models, which are applied to complex problem domains. Their adjacency to the field of genetic and evolutionary algorithms and their great adaptiviness make them an ideal tool for application to various problem areas, for which they are able to provide new and unusual approaches. As a major part of this work also other learning algorithms, e.g. extended classifier systems by UW-COGSCI (XCS), have been integrated in the distributed control framework and compared to the capabilities and performance of the artificial immune network.

(2) The Particle Filter approach. The particle filter approach lives in the state space, where particle filters try to represent the belief about the state by a sample of particles. Each particle can be interpreted as a possible realization of the state. In more probable areas of the state space, the density of particles should be higher.

(3) The Markov model approach. Whereas the particle filter approach operates in the state space, we developed another approach dealing directly with the observations, in our case the observed image, or more precisely, with a feature vector generated from this image. The rough idea is to view the world as a never-ending sequence of a finite number of possible sector views. Advanced approaches also allow predator robot actions. In collaboration with IDSIA, OFAI successfully tested, whether the LSTM (Long Short-Term Memory) approach was capable to predict future states for the given example (a ball rolls behind a wall and is sometimes reflected). 

(4) Other Approaches with discrete sector views. OFAI also investigated whether there is any benefit from working with discrete sector views for the already mentioned scenarios. 

(5) The best working of the algorithms tried was transferred to the Webots environment and was also used to control the prey robot. For that purpose two AIBOs were put in a Webots scenario, one of them programmed as predator, the second as a prey. 
To approach the integration of sensory-motor representations with symbolic ones, ISTC-CNR has developed a schema-based agent design methodology. Schemas are distributed and decentralized structures in which action control and prediction of sensorimotor flow are integrated. Expectations about action’s effects are first learned throught agent-environment interaction, and then guide selection of action appropriate to the agent’s goals and context as well as selection of relevant information. Schemas can also be arranged hierarchially to manage actions and goals ranging from simple to complex, and the architecture integrates two kinds of motivational pressures, the former drive-based and the latter goal-based.

With respect to modelling deliberation with a BDI framework, ISTC-CNR has been focused on the introduction of expectations. Whereas typical approaches include graded primitives and temporal dimensions (i.e. belief on the future), ISTC-CNR has introduced expectations as emerging attitudes chunking epistemic and motivational states. Such architectures have been implemented in computational agents, evaluated in simulations and measured in specific tasks. Simulation based experiments tested some of the relevant agent performances in terms of the introduced functional responses to emotions. Performances have been evaluated along with success criteria chosen with respect to critical parameters and their related evaluation metrics. The evaluation of agent effectiveness considered a twofold analysis: on the one side mutable contexts and their related complex dynamics, and on the other side the cognitive model adopted for modelling emotions.

Breakthroughs in artificial cognitive systems

MindRACES has advanced the idea that the mind essentially is an anticipatory device. 

This fact has multiple implications, from brain organization, to the structure of several (if not all) functions that crucially depend on anticipatory and generative processes. This view is nowadays gaining consensum in the literature under several labels, including action-based, motor-based, simulative and emulative theories of cognition. MindRACES has contributed both theoretically and by providing grounding (in the form of agent simulations and robotic implementations) to these ideas.
Research on anticipation and anticipatory behaviour has the potential to break at least three traditional disciplinary domains. 
The first is among the individual and social domains, since action selection, monitoring, control, understanding and imitation can be based on the same, anticipatory-enabled set of mechanisms. 
The second is the untenable distinction between perception and action, that, we know know, jointly contribute to goal-directed action and whose interactions can be modeled by anticipatory and expectation-matching processes. 
Viewing the mind as an anticipatory device contributes also to understanding perception and action in a genuinely integrated fashion. In particular, if this is done, several overlooked important constraints and opportunities become apparent, for example:

· Motor control requires not only to perform actions efficiently, but also to decide when to perform them. Active vision (e.g. vision guided by a moving eye) and attention can play an important role in this process by selecting relevant information so as to directly produce a bias that leads to produce decisions (e.g., by biasing the dynamics of a dynamical neural network). 

· Visual information serves not only to gather information, but also to drive and monitor motor action. So, for example, the eye should stay on the target of a reaching movement while the movement is performed.

· The binding problem concerning the “where” and “what” of vision can be tackled by having an attention system that focuses on targets of actions, and isolates them from other distracting elements of the scene.

Finally, also the division among higher-level and lower-level cognitive capabilities can be abandoned, since anticipation could be the key evolutive mechanism permitting to develop the former from the latter. 

All these aspects are equally crucial nowadays if we want to design artificial systems that go beyond their limited capabilities, and we expect that research on anticipation of the kind pursued in MindRACES will boost research in this direction. 
As an example consider the prototype robot developed by IDSIA with only a limited vision. Such robot can learn a probabilistic predictive world model and uses it to solve tasks through just a few physical experiments but a million mental experiments. This is the first such important combination of several previously known algorithms to address the fundamental challenge of accelerating reinforcement-based real robot learning. A further example is the hierarchical agent architecture developed by ISTC-CNR that couples selective attention and action both in the sensorimotor cycle and in reasoning. Such agent architecture learns to select from the environment or from its knowledge only information that is relevant for its current goals and actions. This form of grounding abstract representations apt to reasoning in those adapted to the sensory-motor loop is a core contribution to the current debate in cognitive science literature.

Major difficulties

Establishing relations between sensorimotor and cognitive capabilities is a major and difficult challenge. One example is the intention-to-action hierarchy. When actual action is taken, intentions formulated at an abstract level have to be specified into motor commands, possibly crossing several representational levels. How to manage the interplay among the levels of the hierarchy, how to learn them, and when are up to the moment very complex problems that still deserve a solid theoretical, empirical and computational foundation.

Many approaches we have employed simulated physical robots, often with noisy sensors in a simple though dynamic environment. The major difficulties shared by all the partners were almost all settled in the area of real-time and embodiment of the robot. For example, since embodied agents and robots need a certain amount of real time to perform one of its atomic actions (turn right, move forward, …) the simplest difficulty is to find a balance between the length of such an action and the amount of learning in between two actions. Of course the sensors still perceive while the action is performed, but the question is at what granularity is this sensory history to be taken into account for the next learning step. On the other hand if the atomic actions that are performed are to fine grained, the amount of aliasing will grow indefinitely and a reinforcement learning algorithm will no longer be able to deal with such input data.

It is also well known that the main difficulties of applying learning methods to real world tasks occur while switching from simulation to reality. This gap can be closed for the learning agent by pre-processing input data to encourage relevant observations but scaling this approach up to very complex problem is still an open issue.      

An overview of MindRACES results 

In summary, the ability to anticipate the future is a central property of any cognitive system. In order to show how multifaceted the role of anticipation is, MindRACES results span over many different functions from sensing and perception, to action selection and control to social and emotional interaction. In what follows the main results carried on in the project are summarized.

LUCS has investigated a mechanism that can be used for anticipatory looking and developed methods that can learn to control the gaze of a cognitive system in an anticipatory manner. Similar methods can also be used to control action directed toward future locations of objects, such as catching a moving ball. 

In fact, ISTC-CNR in collaboration with other partners (mainly LUCS and UW-COGSCI) has built a whole neural architecture, controlling a robotic camera-arm plant, where a bottom-up/top-down attention system learns to gather the information needed to control the manipulator. The architecture is based on anticipatory mechanisms at multiple levels: (a) the bottom-up attention component signals the presence of objects potentially relevant for eye foveation; (b) the top-down attention component dynamically activates a “potential action map” that signals to the “eye’s” actuators the objects potentially relevant for the task in hand; (c) the arm controller controls the arm in terms of desired postures, in line with the Ideomotor Principle for which action is controlled by desired anticipated states (goals); (d) the reinforcement learning algorithms used throughout the model are based on the prediction of future rewards that might be obtained with different courses of actions. The results of this research effort not only contributed to the advancement of the efficiency and effectiveness of the single components, but it also allowed identifying the problems and exploiting the potentialities of integrating various anticipatory mechanisms in the same architecture.

Moreover, ISTC-CNR in collaboration with NOZE have implemented agent architectures whose “epistemic and deliberative” capabilities develops from, and are based on, actions performed (really or “in simulation”) at the sensorimotor level. Anticipation here is used as the “glue” among the cognitive and sensorimotor levels in multiple senses: beliefs and other epistemic states used for reasoning are produced on the basis of expectations grounded at the sensorimotor level; an endogenous re-enactment “in simulation” of the agent’s possible actions permits to generate and evaluate in advance multiple interaction outcomes; expectations permit to guide an agent toward its goals by specifying the content of intentions formulated at the higher cognitive level into actual movements, and by on-line controlling and monitoring action.

ISTC-CNR has also explored these issues from the perspective of a higher level cognitive agent. In this respect, ISTC-CNR has extended and integrated BDI architectures with anticipatory and affective skills. The original Belief Desire Intention (BDI) model of agency has been improved,  working on the basis of cognitive theories of anticipation and emotions. In particular, the contribution of ISTC-CNR within this architectural model concerned two main aspects of reasoning: practical and epistemic reasoning. Regarding practical reasoning, ISTC introduced a new model concerning the mechanisms underlying goal adoption, planning and action selection. In particular, on the higher level of reasoning, expectations, predictions, and mechanisms for cognitive appraisal of relevant events and the resulting affective states are used at deliberative level to drive goal adoption and governing means end reasoning. On the lower level, expectations are used for enhancing of situated cognition, for providing pro-activity in dynamic contexts and for enabling anticipation through premonitory and preparatory emotions (i.e. caution, fear, excitation). The introduction of Affective States as control states are aimed at recruiting computational resources, when particular events and contexts require service, and at informing higher cognitive processes. With respect to the epistemic side of reasoning, ISTC-CNR developed new mechanisms for managing, updating and revising agent knowledge about their environments. This aspect concerned both attention and the capability to have prediction on the basis of observed behaviours. More precisely, a surprise-based filter mechanism has been introduced which is responsible for: 1) signalling the inconsistency between beliefs and an incoming input relevant with respect to the current task; 2) the revision of beliefs and expectations on the basis of the incoming relevant information. These effort have originated an enhanced intelligent strategy for resources allocation, for instance balancing Epistemic Vs. Pragmatic activity in information-rich environments. On this basis, also the social interaction between anticipatory agents has been explored. Each practical action performed by some agent in fact potentially updates the perception (and the epistemic states) of other agents. In so doing, the ability to observe and interpret the world where agents are pursuing their goals has been exploited as an intrinsic opportunity for coordination and cooperation activities. Agents have been provided with particular observation abilities, hence enabled to identify causal relationships between behaviours and related outcomes. Through mechanisms enabling goal regression, an observer operating upon his internal representations of common plans, can recognize agents future actions and thus can ascribe mental states to others. Plan recognition is at the basis of a further capability of mind-reading and allows agents to either to coordinate, either to influence behaviours. 

In order to show the kind of behaviours that are possible for an anticipatory cognitive system, IDSIA has developed three distinct robots. The first is a knots tying robot that is able to learn from a human how to tie a knot for minimally invasive heart surgery. The tying sequence consists of over 1000 data points. The robot has to keep in mind the current topology of the yarn and has to select the proper movement of the robot arm with respect to its state and the MIS environment. Secondly, a resilient self-modelling robot can sense its own varying influence on the world and changes its model about itself and its behaviour based on its experience Finally, a cup finding robot that can learn a probabilistic predictive world model by interacting with its real physical environment. It uses this rough model to perform million mental experiments, selects a promising one, executes this in the real world, updates its world model and continuous with the mental part until the robot has learned to solve the task.  

UW-COGSCI has enhanced the predictive capabilities of Learning Classifier Systems that have been shown to be highly adaptive models and reinforcement learning systems. The undertaken enhancements have shown that flexibility, adaptability, and learning reliability can be assured with bounded computational effort in difficult problem classes. Moreover, in order to solve an adaptive robot arm control problem, UW-COGSCI has developed a sensorimotor unsupervised redundancy resolving architecture encoding redundant alternatives in population codes. Using this representation, the system efficiently chooses the best behaviour to achieve the currently activated goal, even given various goal alternatives. 

OFAI has developed an architecture that allows a robot to catch a moving prey in a partially observable environment. The robot has to process the incoming data with the goal to automatically establish connections between a state, performed actions and possible future states. Once, such connections are known, exact or expressed in a probabilistic way, the robot can choose between possible current actions or even a chain of actions to achieve a certain goal state, or at least to get nearer to this goal state. For SONY’S robot dog AIBO, OFAI has developed several approaches which analyze the interaction between the robot’s observations and actions, expected situations and the later observed situations. The approaches enable the prediction of what might happen, if the robot has observed a certain history of events and now performs a sequence of actions.  The difference with simpler approaches is that those typically focus on the current observed situation, while with this approach the emphasis is on expected situations still to come.

NBU has proposed an original new mechanism for anticipating: making prediction by analogy. The basic idea is to enable robots to predict some unknown characteristics of the world based on analogy with a single past episode of their experience. This idea contrast with more traditional approaches that build a model capturing statistically regularities in the world. NBU’s approach was tested by using the DUAL/AMBR cognitive architecture. Being a fundamental cognitive science research oriented architecture DUAL/AMBR had to be extended with a set of new mechanisms related to perception and action using analogy-based predictions. On the other hand, NBU approach relied on mechanisms that could be tested with psychological experiments with humans thus giving them the needed validity. The model mechanisms were first tested in a simulation and then compared to experimental results. Only after the successful completion of this procedure implementation in a real robot was carried on.

ISTC-CNR has given a significant contribution to the theoretical models of emotions and their relationships with cognition and anticipation. Emotions have been placed in a close relationship with a basic kind of anticipatory representations: goals. Along this line of research, specific functional description of different emotions has been provided along the agent mental model. This model addresses the route from emotion to anticipation, then the reverse one, from anticipation to emotion. For instance, emotions monitor and signal goal pursuit, achievement and failure; they generate goals; and finally they may translate into goals. 

Emotional interaction has been explored also by IST with a focus on the anticipatory nature of such affective states. To this end, IST has presented an extension to the standard agent architecture based on an anticipatory affective mechanism of parsimonious design: the emotivector. Coupled with a sensor, the emotivector generates affective signals resulting from the mismatch between sensed and predicted values that can be used to autonomously control the behaviour of a synthetic embodied character. Such autonomous behaviour was evaluated as believable and understandable by humans interacting with both synthetic characters and social robots controlled by the emotivector alone. Because the emotivector has a context-free nature and does not need parameter fine-tuning, it is a flexible mechanism which provides a new engineering approach to the construction of synthetic believable behaviour.

An interdisciplinary research

Given its role at different levels of cognitive complexity and across different cognitive functions, anticipation is an interdisciplinary research topic par excellence. In fact, in recent years a cross-fertilization between biologists, neuroscientists, psychologists, computational roboticists has occured. This depends on the fact that anticipatory phenomena in the brain are widespread, and range from mechanisms for enabling learning, to mechanisms for stemming and controlling sensorimotor and cognitive capabilities. MindRACES did an effort to provide a unifying view of anticipatory phenomena that is intended to foster collaboration among the traditional disciplinary domains.

Interdisciplinarity, for instance, is fundamental for bio-inspired approaches. Neuroscience and psychology offer interesting problems (relations between bottom-up and top down attention, use of eye centred representations, visuomotor transformation, fovea/periphery models, motor control of manipulators based on equilibrium-points, formation of goal-based motor primitives on the basis of “motor babbling”) and suggest possible solutions to tackle them (population-code maps, reinforcement learning, Hebb learning, particular structure of the neural architectures used). Computer science offer the formal tools to test the models with simulations and artificial controllers. Robotics helped to carry out tests of the models in real environments, and to increase the realism of simulations in useful directions.

The interdiciplinary aspect of the project has been fundamental for its success. It is unlikely that a purely engineering approach to the problem of anticipation would have been able to develop such systems. By basing formal models on psychological and cognitive data, it becomes possible to find new methods that would otherwise not be apparent. In addition, by studying the problems that humans must handle, it becomes obvious what kind of complexity that must be managed by future cognitive systems.

Moreover even new phenomena that were not envisioned at the beginning can be now explored. For instance, concepts of subjectively perceived beauty, curiosity and creativity and good art are usually beyond the scope of scientific inquiry. However adopting an anticipatory framework they can now be illuminated. IDSIA for example has postulated that human or other intelligent agents function or should function as follows. They store all sensory observations as they come — the data is ‘holy.’ At any time, given some agent's current coding capabilities, part of the data is compressible by a short and hopefully fast program / description / explanation / world model. In the agent's subjective eyes, such data are more regular and more beautiful than other data. It is well known that knowledge of regularity and repeatability may improve the agent's ability to plan actions leading to external rewards. In absence of such rewards, however, known beauty is boring. Then interestingness becomes the first derivative of subjective beauty: as the learning agent improves its compression algorithm, formerly apparently random data parts become subjectively more regular and beautiful. Such progress in data compression is measured and maximized by the curiosity drive create action sequences that extend the observation history and yield previously unknown / unpredictable but quickly learnable algorithmic regularity. All this process can be naturally implemented on computers, through an extension of passive unsupervised learning to the case of active data selection: a general reinforcement learner (with access to the adaptive compressor) for actions that improve the subjective compressibility of the growing data is rewarded. An unusually large data compression breakthrough deserves the name discovery. The creativity of artists, dancers, musicians, and pure mathematicians can be viewed as a by-product of this principle. 

Potential impact

The research carried out in the project is fundamentally basic. Therefore, its ultimate goal is augmenting our knowledge on fundamental principles that might be used to produce cognitive systems that exhibit behaviours with a flexibility and an efficiency that current cognitive systems lack. Although the researches carried out do not have a direct utility for applications, they contributed to build the knowledge necessary to develop truly intelligent and flexible robots in the future, and so to strengthen the position of Europe in the world competition within this area.

Notwithstanding this overarching commitment, the potential impact of MindRACES beyond scientific understanding has also been explored in more detail. 

Currently most robots are hand-programmed. The programmer also predefines the flexibility of a robot. Examples are adaptivity to changing light conditions, energy related behaviour switching, and the ability to compensate malfunctioned hardware. The software to automatically control these adaptable robots becomes more and more complex, and much less maintainable. Also the number of different robots with numerous tasks they will have to solve is growing over the years. In the future there will be so many of them nobody can program them all. Instead we must equip them with learning capabilities, exploratory behaviour and adaptive anticipation to cope the challenge of robotic embedded life. This project greatly contributed to this goal.
Moreover, to render such systems accessible, a special care should be taken in the creation of easy-to-use human interfaces. As demonstrated in the project, anticipation and emotions can be both effective concepts in the creation of autonomous believable behaviour which, in turn, is an important requirement for systems designed to interact with the final user. This has an impact on several application domains, namely on the specific domain of robotic assistants and companions.

Finally and on a shorter time-scale, research in MindRACES has led to preliminary but promising industrial applications. Four industrial products were realized by ISTC-CNR and NoZE that are based on methodologies and software components developed in the MindRACES project: (1) a tool for information flow prediction and reasoning, that has been successfully integrated into the production cycle of the icc s.a.s enterprise (Ripa Teatina, Ch, Italy); (2) a tool for supporting the monitoring process of employers’ wellness, that is based on prediction of their possible motivational problems, and is now been used by Noze s.r.l. (Cascina, Pi Italy); (3) a tool for to predicting the dynamics of complex environment (the Eco Industrial Park), that is now being used by the Department of Energy and Environmental Research, University of Palermo (Italy); (4) a tool permitting to manage roles and resources allocation in business groups, that is now being used in the Prometeia risk analysis group (Bologna, Bo, Italy).
Success Cases
This chapter illustrates some of the concrete advantages of including anticipation in artificial cognitive systems. We will briefly introduce fourteen case studies which resulted from the EU project MindRACES (from Reactive to Anticipatory Cognitive Embodied Systems, funded under grant FP6-511931 under the “Cognitive Systems” initiative from the EC). In these studies, simulated or real robots were tested in different environmental conditions which required advanced sensorimotor and cognitive abilities, such as the capability to initiate and control goal-directed action, to orient attention, to find and reach goal locations, to perform mental experiments for selecting action, etc. In all these studies it has been shown an advantage of anticipatory mechanisms with respect to reactive mechanisms in terms of increased robots autonomy and adaptivity. In some cases it has been shown that anticipation determined the development of new cognitive abilities which were simply impossible without it. For each case study, we will also indicate relevant associated publications in which it is possible to find a more detailed presentation of the computational architectures, anticipatory mechanisms as well as an analytical presentation of quantitative results.
Flexible goal-directed action: the SURE REACH architecture

SURE REACH (a loose acronym for Sensorimotor,Unsupervised, REdundancy-REsolving control ArCHchitecture) is a hierarchically structured control architecture, which builds its internal representations from scratch. Initially, it explores its environment by means of random motor babbling (Butz et al., 2007b,a; Herbort and Butz, 2007). The knowledge of SURE REACH about its body and environment consists of two population-encoded sp atial body representations (the neurons of the population code are currently uniformly distributed in space, adaptive spatial coverage methods are being investigated) and two associative structures (learned). SURE REACH has been applied to the control of a 3-DOF arm in a 2-D environment so that each target position can be reached with various goal postures and on various paths. The model encodes an extrinsic hand space, which encodes hand locations (x-y coordinates) with a uniformly distributed, partially overlapping 2-D array of neurons. An intrinsic posture space similarly encodes arm postures with a uniformly distributed, partially overlapping 3-D array of neurons (shoulder, elbow, and wrist angles). A posture memory associates hand with posture space neurons, encoding an inverse kinematics model. A sensorimotor bodyspace model associates postures with each other in an action dependent manner. The model is able to predict which posture is reached given a current posture and chosen motor command. More importantly, it is also able to deduce the posture that preceded a given posture, given some action was executed and thus, it is able to choose motor commands when given a current posture and a goal posture. If the goal posture(s) are no t in the immediate vicinity, then dynamic programming can be used to generate potential fields in the representation that are able to guide the arm to the goal posture by means of closed-loop control. The representation together with the goal-directed behaviour control processes enables highly flexible and adaptive anticipatory behaviour control. Essentially, due to the anticipatory, redundant encoding of behaviour alternatives, the system is able to initiate goal-directed actions highly effectively and context-dependently (Butz et al., 2007a). Essentially, it has been shown that the anticipatory architecture learns to reach goal postures as well as hand goal locations highly reliably. Moreover, the system can flexibly adjust its behaviour to various task constraints: it can avoid obstacles that block the shortest path to the goal; it can compensate for broken joints and prefer particular joint movements over others; it can combine multiple goal constraints such as a hand goal location with a particular position of one particular joint (as long as the hand goal is still reachable). These capabilities were achieved by simple multiplicative influences on the architecture. Moreover, it has been shown that the system can also account for future goal priorities while executing reaches to current goal locations, essentially preparing for a faster and smoother reach to a subsequent goal (Herbort and Butz, 2007). Additionally, in collaboration with other MindRACES partners, it has been shown that the architecture is highly suitable to be coupled with goal state selection mechanisms. These selection mechanisms were based on reinforcement learning and particular the actor-critique method. In the examples investigated, it was shown that the goal selection mechanisms emergently chooses to reach goals that are inside a goal region further away from a punishment region, the closer the punishment region and the stronger the punishment - essentially improving decision making due to the anticipatory representations and the implicitly anticipatory goal location choice emergent from the reinforcement learning architecture. This was shown to also be biologically plausible (Herbort et al., 2007b).
TGNG - Time Growing Neural Gas
A time-growing neural gas (TGNG) has been developed that builds spatial representations from scratch linking sensory codes time-dependently (Butz, Reif & Herbort 2008). Essentially, TGNG learns sensorimotor spaces from scratch via random motor babbling by forming a neural network representation of the experienced space and the connectivity within the space. Distances in space are represented by the motor activity necessary to bridge that space. Sensory proximity is not required. The exploration essentially leads to the generation of a ‘cognitive’ map, represented by the growing neural network. The representation is related to place-cell and head-direction cell encodings found in the hippocampus in rats (Wiener et al., 2002). Each node in the growing network essentially encodes a place cell, which is activated by appropriate sensory input. Each edge, which connects two place cell nodes, associates a motor command that was executed on average to move from one node to the next one. TGNG is complementary to SURE REACH in that it may replace the currently uniformly distributed bodyspace encodings in SURE REACH by the flexibly developing spatial encodings. TGNG was so-far used to control a robot vehicle in a maze environment, which the robot initially explores by random movements. It has been shown that the developing map enables the invocation of goal-directed movements in the environment. Particularly, goal-directed movements are invoked by the activation of goal locations, the activation of corresponding network nodes, the propagation of that activity via dynamic programming principles, and the final closed-loop movement to the goal. Behavior is controlled by activating that motor activity that is encoded in the edge that leads to the next higher activated node from the node best representing the current robot location. The spatial anticipatory encoding again showed to yield highly effective and context-based action initiation and fast and smooth behaviour execution control. Particularly, it was shown that the system was able to reach goal locations reliably and effectively and it was also able to adapt its behaviour to additional task constraints, such as preferred movement directions (Butz, Reif, & Herbort, 2008).
Directional movements controlled by the anticipatory, evolutionary system XCSF

The XCSF classifier is well-known in the evolutionary computation community for its robust and flexible capability of approximating diverse functions accurately and reliably. It has been applied to the approximation tasks of up-to seven dimensions and has shown to be machine-learning competitive in several respects (Butz et al., ress). In behavioural tasks, the system has been applied to the problem of learning generalized Q-value functions in real-valued domains. Recently, the system was also successfully applied to the challenging task to control an arm with three degrees of freedom in a two-dimensional environment. Essentially, the system learns condition-prediction classifiers iteratively online, approximating the behavioural arm space by evolving a population of overlapping, piece-wise (linear) classifier approximations. Each classifier approximates the control necessary for a directional movement in a particular arm posture subspace of the environment. In this application, XCSF partitions the posture space of the simulated arm to predict accurately how motor actions affect hand movements. The inversion of the predictions then enables goaldirected, closed-loop control of reaching movements. The system has been shown to reach remote hand locations accurately, reliably, and effectively. The evolutionary learning approach does thereby not rely on the particular sensory inputs nor a linear mapping. In fact, the learned control mapping is inherently non-linear. Nonetheless, due to the predictive learning approach and the consequent, inverse, piece-wise linear control approach, the system showed to yield fast and smooth behaviour execution patterns (Butz & Herbort, in press). While the comparisons with comparable neural control approaches still need to be evaluated, the system is the first evolutionary system that is able to yield the accuracy and behavioural robustness observed. Only the employed coupled forward-inverse anticipatory representations in the control structures made the achieved behaviour possible.
Target motion prediction

To solve the task of predicting the movement of a visual target we have used a learning linear associator with memory embedded within a Kalman filter. The Kalman filter takes care of the prediction of the target location while the linear associator learns the model of the target motion (Balkenius and Johansson, 2007b; Balkenius and Gardenfors, 2008). The memory component stores previous observations and allows the associator to train on a large number of observation at each iteration. This emulates some of the advantages of batch-training method within an on-line learning system. The learning system has been applied to a number of task with a tracking component including the tracking of moving balls in partially occluded situations and the modeling of pursuit eye-movements. By combining the learning predictor with an inverse model of a robotic arm with three degrees of freedom, it became possible to catch a plastic toy fish that moved along a regular circular path. The system learned to predict the location of the target using color tracking in combination with the associator describes above.The implemented system has a delay of approximately 500 ms from camera image to motor control. The prediction mechanism is essential in tracking applications as well as for the manipulation of moving objects. It also allows for faster and smoother behavior execution since actions can be directed toward the future location of the target. Prediction is an important ability that is useful as a component in many different applications. Our results show how motion prediction can be included in many different tasks. Furthermore, we have looked at how different learning systems can be adapted for prediction by delaying inputs, outputs and training data in different ways. A general conclusion is that any learning system can be adapted for prediction tasks in this way. We have also shown that predictive learning can be very fast in simple situation.

Spatial attention

We have formulated a new model of a learning saliency map which allows standard reinforcement learning techniques to be used in a number of attention tasks (see chapter II). They are all based on a novel and compact formulation of a saliency map, which allows may types of visual information to be combined in a coherent way. In the current implementation feature based and spatial attention is combined in a seamless way. The central idea is that the saliency map can be seen as an approximation of a value function for reinforcement learning. Unlike the standard actionvalue function in reinforcement learning, there is no state in this formulation. Instead, each location in the image corresponds to an individual action that directs attention to that location. Since all different sources of attentional signals all eventually lead to attention that is spatially focused, this provides a common language for all such processes. The mechanism has been applied to selective attention as well as priming in sensory processing. The mechanism is general enough to be used in any system that includes any for of sensory selection. In particular, we have used the mechanism to select targets for visual tracking. The mechanism can be used to improving top-down attention by tuning it to external reinforcement. It also improves information seeking by allocating larger processing resources to input data that resembles previously rewarded stimuli. The new mechanism shows how it is possible to add reinforcement learning also to system that are not use to control actions directly and suggests a general strategy for the marriage between reinforcement learning and perceptual processing (Balkenius and Winberg, 2008). Moreover, the proposed mechanism can be used as an important part of a complete reinforcement learning architecture to select for stimuli as well as actions. This is the first computationally efficient implementation of a mechanism first suggested in (Balkenius, 2000b).
Behavior prediction of a group of robots
We use a combination of several techniques to anticipate the future behavior of a group of robots (Johansson and Balkenius, 2007). Kalman filters are used for short term prediction and correction of tracking data. Associative anticipatory attention mechanisms are used to learn where robot will reappear after they disappear behind obstacles and to produce epistemic actions in the form of directed attention to gain optimal information about the behavior of the other robots. The system also uses internal simulation based on internal models of the other robots to anticipate how they will behave in order to select appropriate actions in relation to the other robots. The robots also use a form of primitive joint attention through communication about their observations. The combined mechanisms were used to investigate how a robot can control its own behavior depending on the anticipated behavior of another robot, a hiding scenario was implemented using a multi-robot set-up. There were four robot thieves and two guards that patrolled the environment in a regular fashion. The task for the thieves was to hide from the robot guard while navigating to certain places in the environment. The implemented systems shows improved decision making by simulation of the other robots. The behavior execution of the robots are also smoother and faster by using anticipatory mechanisms, both at a low level of motor control, on intermediate level for avoiding collision with other robots, and on a higher level for reaching their desired goals without interference from the other robots. The implementation shows how anticipation at a number of levels can be made to work together within a unified agent architecture and addresses many of the difficulties that arises as complex anticipatory systems are built. We believe that this is the first architecture to combine this many aspects of anticipation in a coherent system and to successfully allow it to control the individual anticipatory behavior of a robot as well as the emergent interaction between a group of robots with similar or conflicting goals.
Enhancing adaptivity in a predator-prey scenario
We have studied how anticipation can enhance adaptivity in a predator-prey scenario in which a predator (usually the dog like Sony AIBOTMrobot) is supposed to catch a prey (e.g. a simpler robot with a reactive behaviour, or in more sophisticated scenarios, a second AIBOTM). First of all, the magnitude of the benefits by implementing anticipatory behaviour for the predator depends on its physical abilities like velocity and agility, but seen with respect to the analogue capabilities of the prey. If, for instance, a predator can navigate much faster than the prey, then the simple behaviour of heading towards the prey and then approaching it will usually be a sufficient strategy once the prey has been detected. This strategy can still be filed under reactive behaviour, as the necessary anticipatory capabilities of learning the effects of necessary movements can be achieved quite easily. A certain form of anticipation is necessary, if prey and predator possess comparable navigation abilities and both operate in the open field. The predator has obviously some advantages if it is able to predict the trajectory of the other robot. If additionally obstacles are present, which might occlude the opponent, then anticipatory capabilities deliver substantial advantages and it is easy to construct scenarios in which pure reactive behaviour rarely succeeds, e.g. if the prey is only visible for a short amount of time, which is not sufficient for a successful access. Two approaches have been developed, one is based on Markov models (Lewandowski, 2007) and the second uses artificial immune systems (De Castro, 2003). Both approaches operate in the space of observed sensor values and do not try to estimate robot locations within a world map. For the Markov approach, the current camera image is transformed into one of a final number of possible views. The elementary building blocks are the estimated probabilities of transitions between the current and the following state, given the current action, which are updated continuously while manoeuvring. The ability to construct 1-step predictions could be used now to form chains of actions and to predict possible future outcomes, or to be more exact, to predict probability distributions over possible states for a given time point. The system knows in its representation every so far encountered state. Actually, the algorithm implements goal-oriented behaviour in a different way. A desired state is one already experienced view, for which the prey has been seen from the nearest so far observed distance. Multiple desired states are allowed to exist. A plausibility check for a necessary condition ensures that the desired goal states are probably achievable from the current state with the acquired knowledge of transitions. A backward induction algorithm (Puterman, 1994) is then applied in a recursive manner that finally a current action can be chosen that, based on the history of transitions, one of the goal states will be reached as fast as possible. The algorithm allows that the prey is temporarily hidden, and therefore it is not mandatory that each step reduces the distance to the prey. The building blocks and systemic operations of the AIS approach are elements and procedures that are in line with the immune system metaphor. Simple atomic elements that code for a condition, an action and an expectation, in terms of the possible outcome of an action, correspond to the antibody that reacts to a certain degree matching environmental stimulus, the antigen. Sensor inputs and therefore the epitopes of the antigens are coded as strings and are compared to the condition parts of the artificial immune systems elements. The best corresponding element is chosen and its action is executed. The expected outcome of this single action can be predicted and this in consequence allows the anticipation of the outcome of future action sequences in relation to the current situation and therefore the prediction of the outcome after multiple time steps. After each successful run, the population of elements is dynamically updated according to certain interdependency patterns that closely follow Niels Jerne’s immune network theory (Jerne, 1974), with the consequence that the concentration of elements belonging to successful runs will grow higher and their elements will be chosen more likely to produce genetically varying offspring than less effective antibodies, which are subsequentially suppressed. Within AIS, the goal to catch the prey is therefore not explicitly given, but is implicitly coded in the distribution and concentration of the elements of the network’s population. A main goal of the experiments with artificial immune systems was the evaluation of their capabilities in controlling a successful predator (and in some cases prey) in match to other control strategies. Among these were genetically evolved static strategies like differently complex subsumption architectures, as well as other evolutionary computation algorithms as extended classifier systems and even anticipatory classifier systems (Sigaud and Wilson, 2007). In all scenarios from the simplest without any obstacles, to the most complex, were both players are controlled by anticipatory control mechanisms and a hiding place was introduced, the artificial immune system approach was able to solve the task of catching the prey (or escaping) very well. Additionally the behaviour exhibited to the human observer in many cases appears like a reasonable anticipatory strategy that one would observe also in biological hunter and prey scenarios. In conclusion both approaches can be successfully applied, if the behaviour of the prey under similar circumstances remains stable. As the presence of obstacles is allowed, they provide substantial advantages over purely reactive models. The behaviour of the prey does not need to be deterministic, but it should not change abruptly, and therefore the algorithms in their current form are best applicable, if the prey’s behaviour is stationary.
Accurate navigation with anticipation

In a real robot task an omnidirectional robot learns to correct inaccuracies while driving, or even learns to use corrective motor commands when a motor fails, both partially or completely, to optimize the driving accuracy for soccer competitions (Rojas and Frster, 2006). The robot anticipates how its actions influence the environment. It uses this knowledge to choose the best action fulfilling its intention in the future. The robot also observes itself to detect drifting effects of its actions and adapt its own world-model. A feed forward neural network with historic and current information of the robot’s poses is used for learning the robot’s response to the commands. The learned model can be used to predict deviations from the desired path, and take corrective actions in advance, thus improving the driving accuracy of the robot. The model can also be used to monitor the robot and assess if it is performing according to its learned response function. We demonstrate that even if a robot loses some motor’s power, the system can relearn to drive the robot in a straight path, even if the robot is a black box and we are not aware of how the commands are applied internally. The robot controller framework integrates action control by choosing actions based on its own self-model. It integrates attention and monitoring by observing its own hardware quality, to change its behavior and monitoring. Without these three anticipatory mechanisms the robot will fulfill its task to an extent, but not sufficiently (in the sense of robustness and accuracy) to win an international multi robot contest.

Mental experiments for selecting action

A robotic task consisting in finding and moving to a randomly placed unique colored cup in the room illustrates that anticipatory mechanisms are essential to fulfill the assignment (Bakker et al., 2006; Zhumatiy et al., 2006). The key idea to solve the task is to use a forward model to translate sensor inputs to robot movement commands. This module anticipates a probabilistic world-model to estimate future rewards by mental experiments. The results of the mental experiments are then used to select the most promising actions for the motor controller. The robot is equipped with a color camera and placed in a room which contains the colored cup. The camera is mounted in front of the robot and looks a bit downwards. It has a very limited field of view in relation to the room. Therefore, the robot has to find the cup before it can move to the target position. The controller of the robot translates sensor input data to robot movement commands. It is trained by various reinforcement learning methods. In (Zhumatiy et al., 2006) the mean position of all camera pixels in a specific color range of the target object is used as input for the reinforcement learner. To reduce the huge amount of memory for the policy, a Piecewise Continuous Nearest-Sequence Memory (PC-NSM) algorithm is used for general metrics over state-action trajectories. In (Bakker et al., 2006) the visual information from the camera is preprocessed into a 5x4 binary grid, which represents the position of the cup in the camera image, if the cup is visible. To reduce the long training time for reinforcement learning algorithms for real robots, a probabilistic anticipatory world-model is learned from comparatively few real robot experiments. This world-model is then used to conduct mental experiments to train the controller with Prioritized Sweeping, a modification of the standard Q-Learning algorithm. The policy is applied with a high repetition rate during the learning process of the mental model and with a real time repetition rate in the physical world. The robot controller framework combines action control, active vision, attention, goal directed behavior, and monitoring. Removing one of these anticipatory modules makes it impossible to learn the whole task on a real robot within a reasonable time frame.
Anticipation and Believable Behaviour

The emotivector (Martinho and Paiva, 2005) is an affective anticipatory mechanism situated at the agent sensory interface. Each emotivector is coupled with a sensor and generates affective signals resulting from the mismatch between sensed and predicted values. Inspired by the psychology of emotion and attention, our implementation of the mechanism showed how attention grabbing potential as well as elementary sensations can be automatically generated from the observation of the values flowing through the agent sensors, and be used to generate believable behaviour for the agent. Two tasks were performed to evaluate the effectiveness of the emotivector mechanism: one taking place in the virtual world, where Aini, a synthetic flower, helped the user to perform a word-puzzle task; and another, taking place in the real world, where the iCat social robot played a game of chess against the user. In both tasks, the affective signals generated by the emotivector were used to directly control the affective expression of the synthetic character interacting with the human user. The results showed that behaviour autonomously generated by the emotivector is perceived as believable and understandable by the users. Anticipation (and the associated uncertainty) plays an important part in the generation of affective signals. In the emotivector mechanism, anticipatory mechanisms are used for: decide whether a percept is salient; define the quality of the elicited affective states; but also allow the mechanism to be context-free, without any requirements related to the manual tuning of parameters. As such, besides being a crucial factor in the autonomous generation of attentive and affective signals, anticipation allows parsimonious design. The research issue resulting from the gap between the scope of psychological theory and the engineering needs of the believable character community has only started to be addressed in a principled manner. The emotivector mechanism is located in this area of relevance and addresses the specific question of creating autonomous believable behaviour to support the engineering of believable synthetic characters. The emotivector achieves such goal by fusing the fields of anticipatory computing and affective computing. By design, this approach is broadly applicable and provides practical means to significantly improve the capabilities of believable characters driven by such architectures.
Anticipatory behavior in a searching-for-an-object task
We used analogy as a prediction mechanism. The analogy involved can be very superficial or very deep. The AMBR model of analogy making (Kokinov, 1994; Kokinov and Petrov, 2000, 2001) was further developed and augmented with a transfer and evaluation mechanisms which allowed the implementation of a real robot scenario involving perception and action execution. These mechanisms allowed to use analogy as a selective attention mechanism and top-down perception directing the attention of the robot to anticipated objects or properties. The scene representation was build gradually including only relevant objects and relations. The use of analogy as a basis for anticipatory mechanism is novel and proposed for the first time. The task in which the model was tested was the ‘searching for an object task’. The AIBO robot should find its hidden bone under an object in a room. The objects differ with shapes and colors. The robot looks at the scene and makes a decision where the object could be and goes to find it. In such tasks using a non-anticipatory approach will lead to full search for the objects below all shapes. It cannot be granted that the episode retrieved by analogy will lead to the correct solution but in many cases it does and the way the solution is found is unique and could be done only by analogy. The advantage of the analogy based prediction compared to other predicting methods is the ability to use just one positive trial in order to generate the prediction. The proposed methods for top-down perception and selective attention based on anticipation deals with the hard problem of processing visual input. The huge space of objects and relations is filtered and allows the mind to handle only small but relevant of the available information. The analogy based anticipatory mechanisms seem very promising as unique for finding solutions in some situations. They have to be further tested in rich environment in order to explorer their full potential and scalability. A promising further development seems to be the use of analogy based predictions as a basis for models of perception and action and work along this line is in progress.
The Role of Anticipation on Cooperation and Coordination
The problem of cooperation as a basic principle was investigated in the framework of Iterated Prisoner’s Dilemma Game (IPDG). Results from simulations with a connectionist architecture of an anticipatory PD player give us inference that anticipation is of high importance for cooperation to be present in 2x2 interactions as well as in simulated PD play in a society of agents. The architecture is based on novel architecture combining a simple recurrent neural network with an autoassociator and a forward looking evaluation mechanism (Lalev and Grinberg, 2007b) thus implementing an anticipation based decision making. In IPDG, the recurrent network processes the flow of available information - structure of the PD matrix, players’ moves and payoffs obtained from the game. Thus, due to learning, the network correlates this information in time, whenever appropriate (e.g., how players’ moves correspond to gains from the game), and tries to infer information which is not available yet like the move of the opponent. In the case of a single couple of IPDG players, the model managed to reproduce results from experiments with human subjects by (Hristova and Grinberg, 2004). Anticipation, rather than backward-looking reactive behavior, was responsible for the cooperation of the model against the simple-strategy computer opponent also used in the experiment with human subjects. Manipulation of anticipation forward-looking parameters also revealed that the anticipatory properties of the model’s decision making contribute most to the observed dependence of cooperation on the structure of the payoff matrix (the so-called cooperation index). With instances of the validated model architecture, simulations of IPDG playing in small societies were conducted. The aim of the simulations was to investigate the role of anticipation in a society of payoff-maximizing agents on cooperation and coordination among them. For this purpose, small groups of agents with different parameterization of the model played IPDG in simulated social environments. The parameters were chosen to have five groups of players with increasing anticipatory abilities. The analysis of the processes in each society was based on the overall level of cooperation, mean payoffs, as well as cooperative coordination. It turned out that the level of cooperation in the simulated IPDG societies grew with anticipation starting with from 5% in the first society and reaching up to 30% in the fifth society. Corresponding to their anticipation, the intermediate types reached intermediate levels of cooperative interactions. A tendency of increase of the mean number of mutual cooperation cases per simulation was observed with increase of the anticipatory properties of agents in the societies. The opposite was valid for the mean number of double noncooperative choices (mutual defection) per simulation as this number increased with diminishing of anticipation in the societies. Higher mutual cooperation is considered to an advantage as far as this is the most profitable outcome for the society in the long run. The summary payoffs that were gained in each society were also positively correlated with forward-looking abilities: the higher the anticipation within a society was, the higher the payoffs were obtained by the members of the corresponding society. We adopted as a first measure of the level of coordination between the agents the mean number of mutual cooperation games played in a series per IPDG session The longest mutual cooperation coordination was observed in the societies with highest anticipation. Although the sequences are not very long, the influence of anticipation is considerable. Cooperation and coordination play a positive role in a society and represents a decisive advantage. In IPDG, for example, bilateral coordinated cooperation would result in higher gains for both players. On the level of a society, cooperation and coordinated actions will lead to high overall productivity and benefits. These simulations showed clearly that anticipation is decisive for high level of cooperation and higher coordination. According to the results, the higher the anticipatory ability is, the higher the cooperation rate and the coordination in cooperation between agents are. As human cooperation in IPDG is close in rates to the cooperation of our anticipatory agents, the prediction is that coordination series among human subjects may be in close ranges to those, observed in the simulations.

Anticipatory effect of Expectations and Emotions

Recent computational models in the context of cognitive systems are providing simple affective states in terms of their functional effects on agent’s behavior. Their roles are argued to enable adaptive and situated cognition and span from reactive methods of control (similar to those employed in primitive biological organisms) to the control of computational resources, attention and decision making processes. Systems based on appraisal theory, stressed different relations between emotions and cognition, arguing emotions as a causal precursor for the mechanisms to detect, classify, and adaptively cope to significant events and environmental changes. Typically emotions are modeled as cognitive mechanisms to monitor goal pursuit, in terms of functional appraisal of action achievement and failure. Besides emotion signals may rule intelligent resource allocation, improve situated cognition and generate goals translating into purposive behavior. Otherwise we investigated a novel approach, promoting the anticipatory effect of emotions as a main breakthrough. In so doing we envisage to address either the route from emotion to anticipation, either the reverse one, from anticipation to emotion.
Emotions and Anticipation in Goal directed agents
Our theoretical model of emotions have been developed by using mathematical and logical tools which have been developed in the field of decision theory and applied modal logic (Castelfranchi, 2005b; Lorini and Castelfranchi, 2007b). This level of specification has been a first foundational step towards the design of computational architectures for affective and anticipatory agents. In realizing a computational model for emotions and anticipation we adopted a multifaceted approach by distinguishing different processes behind goal oriented behavior. In so doing we distinguished between practical reasoning, epistemic reasoning and situated reasoning and investigated basic principles at the basis of emotions in terms of their cognitive ingredients. This promoted a clear disambiguation between slow, decisional processes, processed devoted to deal with knowledge and processes related to cope with situated events. Whereas typical approaches in modeling cognitive agents are oriented at including graded primitives and temporal dimensions (i.e. belief on the future), we adopted a cognitive approach, introducing expectations as emerging attitudes coming from epistemic and motivational states. A particular use of expectations enhancing problem solving and learning abilities has been modeled in the deliberation and goal selection phases. In addition, by pointing out the subjective character and the functional role of expectations, as intrinsic cognitive ingredients of many basic emotions (i.e. surprise, hope, relief, disappointment), we then considered a further kind of interaction between emotion and anticipatory activities it consists not only in in predicting future events, but also in anticipating future emotions. In (Piunti et al., 2007c,b,e) we investigated the quantitative influence of expectations upon the terms of a rational decision. In so doing we introduced expectation driven decision making (Piunti et al., 2007c), enabling agents to proactively take decisions either on the basis anticipated events (i.e. trends of monitored signals) either on the basis of ongoing needs and desires. As in appraisal-inspired models, we provided emotions and mental states to coordinate different computational and physical components required to effectively interact in complex environment. In so doing we promoted a clear methodological separation of concerns allowing the modeler by breaking down the work into two separate and independent activities: while the former is defined referring to the goal overview in the problem domain and clearly involves decisional processes (i.e. deliberation of alternative courses of actions), the latter can be defined through control frames to improve situated behavior. The following step was made to reinstate the two approaches by taking into account the correlations and the relative interactions occurring in system execution model. This allowed to integrate the low-level, situated reasoning to be used to inform higher decisional processes. The emergent nature of affective states enables agent to adopt a mental frame while both expectations and emotions are conveyed to inform reasoning for redirecting resources and adopt long term strategies once a disturbing event is detected. To this end the contribute of Mental States is twofold: from the one side they can relieve the deliberative and the attentive processes from the burdens to process weakly relevant information in decision processes, excluding action alternatives that are likely to be less promising or have vanishing likelihood to be achieved. On the other side, Mental States provide ready to use action selection and resource allocation strategies that may relieve agent’s need for resource-demanding and meta decision processes. An additional effect of modeling emotions through mental states is for agent’s intention reconsideration. Traditional reconsideration strategies indicate an agent to abandon an intention when a related goal is achieved, when a goal become infeasible or when the agent relieve some inconsistencies between the world state and the external conditions necessary for goal achievement. Our model allows basic emotions to elicit an interruption on normal cognitive processes when unexpected events require servicing. Once based on expectations of future states, intention reconsideration becomes anticipatory and can be used to coordinate behavior with prediction of future states. A further ability based on expectation processing is to allow agents to modify their courses of action in order to anticipatorily coordinate with the other agents behavior. At this stage we investigated agents able to thwart some expected events if the expectation is threatful or promoting them if the expectation is promising (with respect of the ongoing goals) (Piunti et al., 2007a). 
Surprise signal as filter for the update of relevant beliefs

Taking into account the above mentioned model we proposed a novel approach in epistemic reasoning and active perception. A surprise driven belief update processes introducing a notion of information relevance based on goal processing was presented by (Lorini and Piunti, 2007). By considering a proactive and an anticipatory perceptive process, the proposed model implements a novel strategy for epistemic reasoning according to which agents search and filter information from their environment not by monitoring nor perceiving all the retrievable data, but according their ongoing needs, desires, concerns, thus filtering and assessing only what is expected to be relevant for pursuing their goals. The surprise based filter mechanism allows agents to consider useful for their belief updates only those information related with their goals and expectations. Raised from a mismatch between agent’s knowledge and his perceived facts, a surprise signal is sent back to the control system in order to trigger a belief update process. The filter mechanisms is then responsible for (1) signaling the inconsistency between beliefs and an incoming input which is relevant with respect to the current task and (2) the revision of Beliefs and Expectations on the basis of the incoming relevant information. The proposed filter allow agents to realize as useless and unnecessary those additional costs spent for data processing. Hence, surprise governed attention enable agents to process and filter the perceived data according to the ongoing expectations, modeled on the basis of a knowledge model (the belief base) coupled with subjective goals importance (related to subjective desires, purposes and concerns). In so doing they acquire the capability to divide the overall set of perceivable data in a relevant and irrelevant subsets. Our experimental analysis measures the costs for perception and belief updates in agents engaged in dynamic environments. The results show that to higher environment dynamism, the greater costs sustained for epistemic activities are not compensated by an enhancement of achieved tasks. This elicit an important, general strategy exploitable by all those agent engaged in information rich worlds, with big sized information sources to be reported in their belief base. In these conditions, we guess to filter from their environments only the relevant information will be a critical issue for forthcoming cognitive systems (consider for example agents engaged in a information retrieval task in the context of open system applications).
On-line and off-line anticipation for action control

In a series of studies we have compared the effectiveness of reactive and anticipatory control architectures in predatorprey scenarios in which it was required to satisfy competing drives (e.g. hunger and avoidance of predators) (Pezzulo and Calvi, 2006a; Pezzulo, 2008b). We were mainly interested in the trade-offs between accurate control of action and time spent in prediction. Anticipatory mechanisms used on-line with action make it more accurate and permit forecasting possible dangers arising from it. At the same time, prediction is a costly operation that requires time, and in principle it can make situated agents less effective or less responsible to dynamics in their environment such as dangers. This trade-off is further complicated when anticipatory mechanisms are used off-line with action to predict multiple and/or distal events (e.g., the long-term outcome of several alternative potential courses of actions). Here the (computational) costs for engaging in ‘imagination’ and ‘planning’ are higher and can prevent effective situated action. Due to the failure of the earlier AI systems to deal with this trade-offs, it is believed by several researchers that belong to the ‘novel AI’ (Brooks, 1991c) that situated agents should better act than reasoning.
Advantages of anticipatory mechanisms used on-line with action

In a first study (Pezzulo and Calvi, 2006a) we compared the performance of two schema-based agent architectures in a predator-prey scenario involving multiple entities (predators and preys), obstacles, and moving objects. The first agent architecture included multiple perceptual and motor schemas (e.g. for detecting and escaping predators, detecting and catching preys, etc.), having one inverse and one forward model (Wolpert and Kawato, 1998a) each. These two (coupled) internal models were used for determining the motor action and for predicting its sensory effects respectively. Prediction errors (of the forward models) were used for action control and schema selection: schemas generating reliable predictions (and related to the current active drives) were selected for controlling action. The second agent instead lacked the internal forward models. Our results indicated that the first agent architecture demonstrated a better adaptivity and was able to satisfy better its multiple drives; see (Pezzulo and Calvi, 2006a) for the experimental results and a discussion. This shows that in such dynamical and demanding environments it is advantageous to use on-line anticipation for action control and schemas selection, despite the costs of running forward models in real time. Overall, contrary to the view that situated agents need to be reactive (Brooks, 1991c), this experiment indicates that internal modeling is highly advantageous for situated agents if it is done on-line with action and produces representations whose format is compatible with the agent’s sensorimotor loop (as in the case of internal forward models).
Further advantages of off-line simulations

In a second study (Pezzulo, 2008b) we investigated how the same anticipatory mechanisms exploited in the first study can be exploited off-line to anticipate several steps in the future (an internal, ‘mental’ simulation of behavior) for the sake of (1) preventing dangers and (2) planning goal-directed action (i.e., mentally generating and selecting sequences of actions to realize further). In this case, we were interested in testing the possible advantages or disadvantages of engaging in ‘imagination’ during situated action. Again, two agent architectures were compared, with and without the capability to re-enact schemas in simulation. In the first agent architecture the same sensorimotor schemas adopted in the first study where used, but now they were allowed to run off-line in simulation mode, too, for predicting the long-term sensory consequences of their motor commands. In simulation mode motor commands were inhibited (not sent to the actuators), but fed as sensory inputs to the forward models, which then produced new sensory predictions that are used by the inverse models for generating new motor commands ‘as if’ the agents actually sensed the predicted future. The loop between forward and inverse models allowed generating long-term predictions for an arbitrary number of future steps. Two additional mechanisms were responsible for (1) stopping current action if its predicted outcomes are evaluated as dangerous (a kind of ‘somatic marker’ mechanism, Damasio, 1994), and (2) evaluating, selecting and activating the better ‘plans’ (i.e., sequences of ‘simulated’ actions). The second agent architecture used forward models in the on-line control of action, but lacked the ability to run in generation mode. The two agent architectures were tested in a tasks consisting in exploring a simulated house for finding a ‘treasure’ without being captured by guards (as in the first study, each agent architecture had concurrent drives to satisfy). Our results have shown that the first agent architecture, using anticipation both on-line and off-line (i.e., in generation mode), outperformed the second one in terms of adaptivity thanks to its capability to predict possible future dangers and to plan from time to time; see (Pezzulo, 2008b) for the details. This happened despite the costs of simulating and planning. Consistently with recent simulative theories of cognition (Damasio, 1994; Grush, 2004a; Hesslow, 2002), the results of our experiments indicate that mental simulation is an effective strategy for avoiding dangers and planning in dynamic environments despite the fact that ‘imagination’ can in principle make an agent less efficacious in its current sensorimotor interaction. As argued in (Grush, 2004a; Pezzulo and Castelfranchi, 2007), we believe that off-line, mental simulation is a suitable, embodied alternative to ‘reasoning by symbol-crunching’ of traditional AI systems, since it permits internal manipulation of (anticipatory) representations without losing grounding and situatedness. Thanks to anticipation, artificial systems can engage in mental operations that when performed by ‘ungrounded’ AI systems typically determine a poor performance in situated activities. Overall, we believe that studies like this have the potential to shed light on the role of mental simulations, how they enabled increasingly complex cognitive capabilities and the role it played in the passage from present-directed to goal-directed, purposive action (Pezzulo, 2008a; Pezzulo and Castelfranchi, 2007).
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