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Summary 
This deliverable provides a critical comparison of a number of current attention, monitoring 
and control architectures and gives a theoretically analysis and comparison of  different 
architectures to identify their weaknesses and strengths. Models concerned with bottom-up 
attention, top-down attention, reinforcement control of attention, emulation, schemas, context 
processing and priming are considered. It is shown that no current model is able to handle all 
these mechanisms but that there exist many subsystems that could potentially be combined 
into a more capable system. 
 
The goal of this text is to provide a critical comparison of architectures for attention, 
monitoring and control. This comparison is put within the overal goal of the MindRACES project 
which is to (1) incorporate anticipatory functionalities into existing cognitive models; (2) 
improve anticipatory functionalities of existing cognitive models; (3) integrate different 
anticipatory functionalities of cognitive models. There will thus be an emphasis on the role of 
prediction and anticipation in the different models that are compared. 
 
As few current models aim at including all aspects of attention, monitoring and control it is not 
possible to compare such architectures with each other in a straight forward manner. Instead, 
the path taken here is to list and compare models that address some of the mechanisms 
related to attention, monitoring and control. Since most attention systems to date relate to 
visual attention rather than attention in general, many of the systems will have vision as the 
target modality. 
 
The current overview will form a base for improving existing models and architectures and will 
provide a theoretical comparison by identifying the currently best models for attention, 
epistemic actions, constructive perception with context effects and priming effects. Possible 
improvements will also be stated for future integration into a more complete architecture. 



Nome file: D3_1.doc 
Data: 13/07/2005 
 
 

         6/
41 

 

1 Introduction 
 
The goal of this text is to provide a critical comparison of architectures for attention, 
monitoring and control. This comparison will be put within the overal goal of the MindRACES 
project which is to (1) incorporate anticipatory functionalities into existing cognitive models; 
(2) improve anticipatory functionalities of existing cognitive models; (3) integrate different 
anticipatory functionalities of cognitive models. There will thus be an emphasis on the role of 
prediction and anticipation in the different models that are compared. 
 
As few current models aim at including all aspects of attention, monitoring and control it is not 
possible to compare such architectures with each other in a straight forward manner. Instead, 
the path taken here will be to list and compare models that address some of the mechanisms 
related to attention, monitoring and control. Since most attention systems to date relate to 
visual attention rather than attention in general, many of the systems will have vision as the 
target modality. 
 
The current overview will form a base for improving existing models and architectures and will 
provide a theoretical comparison by identifying the currently best models for attention, 
epistemic actions, constructive perception with context effects and priming effects. Possible 
improvements will also be stated for future integration into a more complete architecture. 
 
 
2 Bottom-Up Models of Attention 
 
In bottom-up models of attention, the input which typically consists of an image or an image 
sequence is processed by one or several operators which are combined to give regions of 
interest or key-points in the image to which attention is assigned. The different models differ 
in what operators are used, in how they are combined and in how the regions of interest are 
selected. 
 
Itti and Koch One of the most influential bottom-up models of visual attention was described 
by Itti and Koch (2000) (Fig. 1). It has its basis in the feature-integration theory of Treisman 
and Gelade (1980). The model consists of a number of parallel channels that process the visual 
input to find regions of high contrast in intensity, color or orientation. The activity in each of 
the parallel processing stages are added together to form a saliency map which codes positions 
in the image to which attention will be directed using a winner-take-all mechanism. The model 
used 7 different features and 6 maps per feature and works on a number of different spatial 
scales. 
 



Nome file: D3_1.doc 
Data: 13/07/2005 
 
 

         7/
41 

 

 
 

Fig. 1. The bottom-up model of attention described by Itti and Koch (2000). 
 
The main strength of the model is that it is able to produce results similar to those of human 
subjects in visual search tasks. A less satisfactory aspect of the model is its large demand on 
computational resources. Although the different filters used claim to parallel those in the 
human visual system, it is hard to get anywhere near real-time performance on general 
purpose computing hardware. This currently limits the use of the model for technical 
applications. 
 
Key-Point Extraction Although not intended as a models of attention, different methods for 
extraction of interest points (key points) in images play a similar role to the filters in the Itti 
and Koch model. The Harris detector (Harris and Stephens, 1988) is often used in image 
processing to quickly find regions of interest in an image. Subsequent processing is performed 
in these regions. An alternative method which is invariant to scale and rotation was described 
by Lowe (2004). It uses difference of Gaussians at different scales to extract extrema points 
which are then tested for stability (Fig. 2). 
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Fig. 2. The calculation of scale-space extrema plays a central role in the key-point extraction scheme 
described by Lowe (2004). 

 
These type of methods are good candidates for technical applications where real-time 
performance is required. It is also possible to use even simpler filters to extract oriented 
contrast at a single scale in many cases (e.g. Balkenius, 1998, Kopp 2004). 
 
Generalized Symmetry Operator An early system for directing attention by bottom-up 
means used a generalized symmetry operator (Reisfeld, Wolfson and Yehezkel, 1995). It was 
demonstrated that the operator would find regions in images that naturally attracts attention 
such as faces, eyes and other symmetrical objects. The model demonstrates that more 
complex properties such as symmetry can be useful in directing bottom-up attention. It is 
possible that a bottom-up attention system would be more useful if this type of features could 
also be detected at a lower level. 
 
Discussion Bottom-up processing is a necessary component of any model of attention. The 
main question to address in future work is what types of low-level operators are necessary to 
achieve appropriate performance. Another question is how different preattentive channels 
should be combined for best performance. 
 
Top-Down Models of Attention An obvious shortcoming of bottom-up attention models is 
that they do not adapt to the current situation, since they always direct attention to the same 
visual properties. This limitation has been addressed in various ways by different models by 
including also top-down influences on attention. Note that most top-down models also includes 
a bottom-up component which is often the larger part of the system. 
 
Westin et al. Westin et al. (1996) describes an early system using both bottom-up and top-
down processes for the control of attention. The bottom-up processing uses normalized 
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convolution to filter the input image. This method has the advantage that it makes it possible 
to include the certainty of an estimate in the calculations thus avoiding, for example, border 
effects and allow sparse or heterogeneous sampling of the image. It also allows top-down 
influences to modulate the bottom-up processing in a simple way by changing the certainty of 
each measurement or signal. 
 
Balkenius and Hulth Another form of simple top-down influence was described by Balkenius 
and Hulth (1999). A bottom-up attention system was enhanced with a simple learning ability 
that would make the system direct attention to the type of stimulus that had previously been 
rewarded. The system used a simple form of reinforcement tuning to learn the desired target 
stimulus. The system was limited in that only a single stimulus type could be learned and the 
system would thus not adapt to different tasks or situations, but the idea of using 
reinforcement learning to tune a bottom-up attention system can be useful also in more 
complex models. 
 
Choi, Ban and Lee A minimal form of top-down influence in a basically bottom up model was 
included in the model of Choi, Ban and Lee (2004).  In the model, a human operator can train 
the system to ignore certain features based on top-down inhibition. The top-down system 
consists of a modified ART network that receives input from the saliency map and may 
categorize it as uninteresting and subsequently inhibit it.. The top-down part of the model is 
very simple as essenitally categorizes the independent components used for the saliency 
maps. A more useful form of top-down inhibition requires contextual control (cf. Balkenius, 
2000). 
 
Corchs and Deco Many models of top-down attention have been inspired by the human 
neurophsyiology. A typical model of this type is the one proposed by Corchs and Deco (2002). 
It includes a model of the primary visual cortex as well as visual area 2-4 and an object 
recognition system corresponding to inferiotemporal cortex (Fig. 3). It also includes spatial 
coding system that works in parallel to the object recognition pathway resulting in one "what" 
system and one "where" system. Both systems receives top-down biases from a module 
corresponding to prefrontal cortex. 
 
The model aims at reproducing data at a neuronal level, and as is usual with this type of 
model, it is not clear how it could be extended to more realistic inputs and outputs. 
Nevertheless, it suggests many ideas for the architecture of a biologically inspired attention 
system. In particular, the disassociation into identification and spatial processing is probably a 
required component of any attentional system as is the local competition within each module 
of the system. 
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Fig. 3. The model of Corchs and Deco (2002) is a typical biologically motivated model of visual attention. 
 
Decon and Zihl Deco and Zhil (2001) describe a model that combines bottom up and top-
down processing that addresses the problem of select both the scale and area of the attended 
location in an image. It consists of a number of modules that process the input at different 
spatial levels and can be viewed as hierarchical predictors at the different spatial levels (Fig. 
4). This results in a sequential coarse to fine analysis of the image. The main contribution of 
the model is that it shows that it is necessary to process visual input at several simultaneous 
scales to be able to direct attention either to global patterns or to local features. 
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Fig. 4. The model of Deco and Zihl (2001) integrates bottom-up and top-down processing of visual 
stimuli. 

 
Rao and Ballard Rao and Ballard (1996, 1999) introduced the idea of the visual cortex as a 
hierarchical predictor (Fig. 5). A number of processing levels make up a hierarchy of Kalman 
filters where the feedback from the higher levels act as prediction for the lower levels (Fig. 6).  
The model attempts to explain the behavior of classical and non-classical receptive fields in the 
visual cortex. 
 
In their method, uncertainty about anticipations by components of other components is 
estimated, affecting the amount of influence levels have on each other (when the higher level 
is very certain that an event is going to happen in a lower layer, it has more control over the 
lower layer than when it is not certain at all). 
 
Additionally, we imagine the inclusion of attention in the framework in that attention may 
increase the top-down influence dependent on current motivations, emotions, or intentions. 
More advanced variants of such systems can be implemented, using techniques such as the 
gating mechanisms in LSTMs and Kalman filters.  
 

 
 

Fig. 5. The basic operation of the model proposed by Rao and Ballard 
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Fig. 6. Hierachical prediction seen as a Kalman filter 
 
Prediction is thus a fundamental aspect of these models. However, the top-down influences are 
very direct and it is not clear how the model can handle complex task-requirements since there 
are no temporal aspect in the basic model. Nevertheless, the framework of hierarchical 
predictive systems appears to be very fruitful for future attention systems. Especially if 
anticipation over time could be included. 
 
Spratling and Johnson Spratling and Johnson (2004) developed a neurobiological model of 
attention in cortex which is based on levels of interacting cortical modules (Fig. 7). There is a 
biased competition within each module which is influenced by top-down and bottom up inputs. 
The model can reproduce some instances of foreground/background segmentation and 
contextual cueing. 

 
Fig. 7. The interaction between two levels of cortex in the model of Spratling and Johnson, 2004. 

 
Navalpakkam and Itti Navalpakkam and Itti (2003, 2005) extended the previous bottom-up 
model of Itti and Koch with two types of top-down influences (Fig. 8). One is a task 
specification that is used to decide on which features are important in the scene and also on 
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what spatial locations should be attended to. The other is a system that attempts to find the 
"gist" of the scene that can further guide the selection of a particular image region. The model 
also includes a symbolic component that models long-term and working memory. 
 

 
 

Fig. 8. The model of Navalpakkam and Itti (2005) allows the task to influence the attentional system. 
 
These additions are necessary extensions of the original model, but it appears that some of the 
additions follow a very different design philosophy than the original model. However, the 
symbolic top-down systems suggests how more complex task related control systems could 
interact with a top-down attention system.  
 
Balkenius, Aström and Eriksson In the model by Balkenius, Åström and Eriksson (2004), a 
number of pre-attentive processing stages  were selected based on their computational 
efficiency and utility in finding targets for the attention system. These bottom-up systems 
consisted of horizontal and vertical contrast at a single scale, curvature detection  using the 
Harris operator (Harris and Stephens, 1988), and a foreground estimator (Stauffer and 
Grimson, 1999) (Fig. 9). 
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Fig. 9. Combining botto-up and top-down influences on attention in the model described by Balkenius, 

Åström and Eriksson, 2004. 
 
In addition, the model included a number of attentive, or top-down, systems that learn to 
predict image regions where targets are likely to occur or relations between different features 
in the image. For example, on attentive system learns associations between target stimuli and 
visual cues that predict the location of target stimuli. A number of different relations between 
cues and target were studied including absolute and relative spatial and temporal relations 
between a single or multiple cues and a target. 
 
Discussion 
 
Adding hierarchies to anticipatory systems could enhance the system's ability to abstract and 
generalize, while reducing the search space enormously. Hierarchically combined recurrent 
neural network systems where lower layers feed into higher layers have been shown to 
effectively enhance certain abstraction and generalization properties of such systems as a 
whole (Riesenhuber, Poggio, 1999).  
 
However, systems where higher layers do also influence the lower layers are even more 
interesting. Imagine a cascaded RNN where every layer is predicting its own state at the next 
time step. Higher level layers try to model the behavior of the lower level layer, correcting 
lower layers when the lower levels do not have a high-enough level of abstraction to reliably 
predict their own state. In other words, we envision systems where high-level components, 
where possible, anticipate and correct the state of lower level components.  
 
Additionally, several hierarchies should be implemented, such as one for action and motor 
control and one for visual processing, as proposed recently (Poggio, Bizzi, 2004). Interactions 
between the two can be manipulated with Rao and Ballard’s original proposion (1997), or more 
recent approaches, such as the mechanisms in Grimes and Rao (2005).   
 
Rao and Ballard (1997) present a probabilistic system. Hierarchical structures should be able 
not only to predict one possible next state, but a probability distribution over next possible 
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states. Using RNNs, we can use extensions of standard adaptations of the error function in 
order to achieve this. 
 
Although this system features continuous predictions, the hierarchical structure enables some 
form of discretization. For example, Boden (2004) discretizes the internal state of the lower-
level network according to prototype vectors before feed-forwarding it to the next level. A 
more sophisticated approach, where discretization is achieved by, for example, a gates-based 
structure like LSTM has, seems more general than his approach. 
 
Another interesting aspect is that hierarchies can achieve a form of abstraction. Although this 
is less general than purely using bigger networks, the probability of finding appropriate 
representations might be higher (might be – this needs to be investigated). Essentially it is 
expected – as often claimed before – that hierarchically, decomposed structures are ubiquitous 
in our environment (Simons, 1969; Gibson, 1979). Since our project is concerned with 
embodied, cognitive systems, as long as sensory representations are chosen wisely, the typical 
structural constraints in the environment should carry over to the internal hierarchical 
structural predispositions. 
 
The different models of top-down attention has often concentrated on either spatial or 
feature/object selection of attention and it is clear that any complete model must include both 
these types of top-down control. 
 
The different models show that there are a number of issues that must be addressed by a 
complete top-down attention model: 
 

• There must exits control both of spatial (where) and feature/object based attention 
(what). 

• The model may be able to reconstruct its input from its predictions 
• It is necessary to handle both coarse and fine analysis of the input, that is, attention 

must work also in scale 
• Hierarchies appear to be necessary for more complex control of attention 
• For prediction and anticipation, a number of possible relations between cues and 

targets must be considered 
 
3 Reinforcement Learning in Attention Control 
 
Schmidhuber and Huber Schmidhuber and  Huber (1990, 1991) built an artificial fovea 
controlled by an adaptive neural controller. The fovea had high resolution in the center and low 
resolution in the periphery. Without a teacher, it learned trajectories causing the fovea to find 
targets in simple visual scenes, and to track moving targets. The controller used an adaptive 
input predictor (a limited kind of world model) to optimize its action sequences. 
 
The only goal information was the shape of the target - the desired final input. Since this 
reinforcement learning task is of the `reward-only- at-goal' type, it involves a complex spatio- 
temporal credit assignment problem. The latter was solved using a recurrent network training 
algorithm. 
 
Grupen et al. Q-learning was used in the model of Goncalves et al. (1999) to control attention 
based on multimodal input and reinforcement signals. The model includes subsystems for long 
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term memory, what and where processing and attention control. An interesting feature of the 
model is that it integrates attention and action in a straight forward way. 
 

 
 

Fig. 10. The model of Goncalves et al. 1999. 
 
Balkenius Balkenius (2000) proposes four principles for attention (Fig. 11). Attention to 
object B is inhibited which disengages the focus of attention (attention-as-inhibition). Shifting 
the attention and gaze g from object B to A is an action s (attention-as-action). Object B is 
selected for the action a by directing the focus of attention, and gaze, toward it (selection-for-
action). The focus of attention is used as an implicit argument for the action. The focus of 
attention refers to the object B without explicitly representing all of its properties (deictic 
reference). 
 

 
 

Fig. 11. Principles behind the control of attention and action 
 
The principle of attention as action implies that attention is controlled in a way similar to 
actions and it thus becomes natural to use reinforcement learning also to attention. This was 
tested in a number of simple visual search tasks. 
 
Minut and Mahadevan One model that uses reinforcement learning to control visual 
attention was described by Minut and Mahadevan (2001). The Q-learning algorithm is used to 
select the target locations in the image. 



Nome file: D3_1.doc 
Data: 13/07/2005 
 
 

         17/
41 

 

 
 

 
Fig. 12. The model of Minut and Mahadevan. 

 
K. Shibata Reinforcement learning was also used by K. Shibata et al. (1995) to control the 
movement of a visual sensor over an image. The goal of the system was to find the optimal 
location of the sensor for object recognition. The same neural network was used both for 
object recognition and to preoduce the sensory motion output. 
 
Context Sensitive Reinforcement Learning In many situations, it makes sense to divide 
the input to a reinforcement learning system into two parts: one that codes for the stimulus 
and one that codes for the context. Current thinking in animal learning theory suggests that 
the stimulus and the context do not play symmetric roles in learning. Initial learning appears 
to be insensitive to the context, while relearning makes behavior increasingly context 
sensitive. By using an asymmetric learning rule of this kind, a reinforcement learning system 
can be designed that initially generalizes maximally between contexts and later restricts the 
selection of actions to contexts where they are successful. If the stimulus and context are 
selected and represented in an appropriate way for the task, this scheme can lead to very fast 
learning. It also avoids catastrophic forgetting if the context inputs are capable of coding the 
different learning situations. 
 
These ideas have been applied to Q-learning to develop ContextQ which learns using a context 
sensitive linear approximator (Fig. 13). Initial learning operates as an ordinary linear 
approximator, but relearning invokes the context to cancel out inappropriate associations. 
Apart from making the learned behavior context sensitive, the method also limits catastrophic 
forgetting in cases when the context can accurately predict which set of behaviors is 
appropriate in the different learning instances. 
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Fig. 13. The context sensitive linear associator forms the basis of the ContextQ algorithm. 
 
Discussion 
 
The use of reinforcement learning in the control of attention offers many interesting 
possibilities. This is especially the case if the control of attention can be integrated with motor 
control in a natural way. A reinforcement learning framework offers the possibility to use a 
common currency to describe the success of both attention and action. 
 
An important future development will be to allow reinforcement learning systems to learn 
attention control that is valid in many different situations and under different environmental 
demands. This will make it necessary to use learning systems that can take the current task, 
context and motivations into account. 
 
4 Dynamic Models of Attention 
 
Although most models of attention primarily address situations in which the viewed image is 
stationary, some models instead look at the pursuit of moving target. A number of such 
models have been developed within active vision and humanoid robotics and here we will only 
describe two recent models that illustrates some important aspects of such models. These 
models deal primarily with the "where" process rather than the "what" process and do thus 
complement the other attention models. 
 
T. Shibata et al. The model of smooth pursuit eye-movements of Shibata et al. (2001) uses a 
predictive model based on linear or non-linear regression networks to predict the behavior of 
the target stimulus. A cascaded control scheme is used in which the predictor sets the desired 
path for the eye controller (Fig. 14). 
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Fig 14. The model of smooth pursuit eye-movements of Shibata et al. (2001). 
 
The model clearly illustrates that anticipation is absolutely necessary for any system using 
active vision in a realistic environment. Since the visual processing is delayed, it is not possible 
to control the movements of the camera using traditional feedback control. Instead, the 
direction of the gaze must be controlled by a model that predicts where the target is now. 
 
One limitation of this model is that it only allows a single model of target motion although it 
would not be too complicated to allow several such models that could be chosen depending on 
the circumstances. An open question is whether there should be many models for different 
targets or if a single simple model is sufficient for all cases. For example, a model which simply 
extrapolates the motion of the target, possibly taking acceleration into account, may be 
sufficiently good. It is also possible that much more complex models should be learned when 
the system has to observe complicated but regular motion. 
 
Balkenius and Johansson An alternative model of smooth pursuit eye-movements was 
proposed by Balkenius and Johansson (2005). The main strength of the mode is that it 
includes both continuous and discrete target predictions (Fig. 15). The model assumes that a 
linear predictor is sufficient for normal pursuit of the target, but when certain events occurs, 
the model learns specific expectations of the behavior of the target. 
 
The model is thus a compromise between a continuous and a discrete model of target motion. 
The main strength of the model is that the hybrid approach allows it to learn complex scenes 
where the target may disappear and reappear or change motion abruptly at certain locations. 
It also acknowledges that the modeling of target behavior must occur in global and not 
egocentric coordinates. 
 
The main limitation is that only a single scene can be learned but this will be addressed in the 
next version of the model that will include a context sensitive predictor for both the continuous 
and discrete models. 
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Fig. 15. The model of target tracking described by Balkenius and Johansson, 2005. 

 
Discussion 
 
Dynamic models of visual attention clearly show the need for anticipation in the control of 
attention and are thus a good starting point for models of attention and control  that wish to 
implement anticipation. They also connect the control of attention to emulator models, since 
an emulator is a necessary component for such control systems. 
 
5 Emulator Models 
 
Although emulator models have been mainly described in relation to motor control they are 
also of interest to models of attention and control. 
 
Grush Grush (2004) describes a mechanism based on Kalman filters. An emulator exploits 
efferent copies of the control signal for producing a feedback to the system. The emulator, 
running simultaneously with the perception-action cycle of the system, provides expectations 
in the sense of expected results of the possible actions of the system; both the input and the 
output of the emulator are in the same format of the representation used by the system to 
perceive and act (and thus they can be directly compared), as shown in figure 16. 
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Fig. 16. Using a model to emulate the behavior of a process. From Grush, 2004. 
 
The same mechanism, the emulator, can be used even for generating pseudo-proprioceptive 
information that is at the basis of motor imagery; and, assuming that the data produced by 
the emulator can run even the sensory areas, even visual imagery can be produced. This is an 
important aspect of an anticipatory system that must be taken into account in real applications 
since this will generate predications of the outcome of an action that can be matched against 
the actual outcome. Of particular interest is the use of several emulators working in different 
coordinate systems resulting in modal and amodal emulation (Fig. 17). 
 

 
 

Fig. 17. Using both modal and amodal emulators. From Grush, to appear. 
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Barsalou Barsalou (1999) describes (although he does not implement) the perceptual symbol 
system that is heavily based on the idea of producing modal representations by using 
Simulators, that re-enact sensory patterns. Differently from emulators, simulators can also 
produce expectations by running offline: “perceptual symbol systems cannot be implemented 
adequately until it is possible to run simulations either in isolation or simultaneously with 
perception”. 
 
Recently the discovery in neurobiology of mirror neurons has strongly revitalized and 
influenced all the research about “productive” systems such as simulators and emulators, 
focusing on the strong coupling between motor activity and perceptual stimuli. 
 
Doya et al. A main limitation of the current emulator models is that they assume there is a 
single process that should be emulated. A major future development will be to allow many 
simultaneous emulators that can be selected as needed . The first steps toward such an 
architecture has been taken by Doya et al. (2000) (Fig. 18). 
 

 
 

Fig. 18. Using multiple paralell models to decompose a reinforcement learning problem. 
 
Discussion 
 
Emulators are central for systems with anticipatory abilities. To be able to react to the future 
state of the environment, it is necessary to anticipate that future state and this requires some 
form of model whether it is implicit or explicit. The emulator framework offers a nice way to 
think about such anticipation. 
 
The major future task will be to investigate how emulators can be designed that can handle 
more complex situations and many situations in parallel. 
 
6 Schema Models 
 
Schematic theories (Arbib 1995, Arkin 1998) have their roots in the work of Kant (1781) and 
Piaget (1954). In artificial intelligence they share resemblances with the concepts of frames in 
Minsky (1975) and scripts in Schank and Abelson (1977). Schematic theories are strongly 
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motivated by biological and ethological models; some of the first works are in fact the attempt 
to replicate into robots the behavior of cockroach, mantis and toad. Schemas are conceived as 
coarse grained modeling unities and opposed e.g. to neural networks that are more fine 
grained (in some implementation they are however decomposed and ultimately realized as 
neural networks; however, it has to be stressed that the descriptive level is coarser). Schemas 
include perceptual and motor elements to form coordinate control programs: a schema can be 
activated by sensory input or internally generated goal states, and many arbitration 
mechanisms are described in literature for selecting the more appropriate one among the 
active ones (they share some resemblances with some action selection mechanisms (e.g. the 
behavior networks, Maes 1990) as well as with the subsumption architecture (Brooks 1991).  
 
Schematic theories stress the procedural knowledge (versus declarative): “a schema 
constitutes the long term memory of a perceptual and/or motor skill, or the structure 
coordinating such skills”. They are especially well suited for parallel and distributed systems, 
since they can be seen as concurrent computing unities. Lyons and Arbib (1989) describe RL, a 
language for implementing schemas in robotic applications. Schematic theories were not 
originally conceived for anticipation; in fact, Arkin describes their use mainly in the perspective 
of reactive and behavior based robotics. However, schemas embed a predictive component 
that is used for action selection (it could be in principle even used for offline planning and for 
online control of action, although in literature these aspects are not stressed). 
 
Roy The recent work of Roy (2005) extends the schematic approach by coupling sensorimotor 
engagement, expectations, and active perception (Fig. 19). Schemas are also more 
sophisticated: they are actually networks of beliefs (both analog or discrete), linked by six 
possible actions, called projections (sensors, actions, transformers, categorizers, intentional 
projections, and generators). The anticipatory nature of schemas is stressed: “Beliefs are both 
memories of what has transpired, and also predictions of what will transpire (contingent on 
action)”.  Schemas are parametric and can be concatenated or abstracted. The whole 
apparatus is constructive and follows the ‘active perception’ paradigm: perception depends on 
understanding the effects of movements on sensory stimulation, thus it is intrinsically based 
on anticipations. Ripley (as well as other robots) are equipped with (hand-made) schemas that 
provide paths from actions to anticipated sensations; for example, the following picture shows 
a schema for active sensing of compliance through grasping. 
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Fig. 19. A example schema for a tangible graspable object such as a cup. 
 
Roy introduces schemas for objects, properties, events and situation; all these 
representational primitives expressed in the same formalism: in this way “beliefs about 
concrete objects (e.g., cups) [can] be efficiently translated into expectations with respect to 
actions”. For example, in a way that is similar to Drescher’s SM, objects are represented as the 
set of possible interactions with it (also capturing in a natural way the notion of affordances, 
Gibson 1979). 
 
Roy aims to provide a grounding for language, “a computational path from sensing and motor 
action to words and speech acts”. Grounding itself is defined as a causal-predictive loop, 
stressing the anticipatory nature of action and even sensing. 
 
Kopp An attention system based on schema theory was designed by Kopp (2003). It uses 
schemas for learned objects or scenes to direct attention to locations where it expects to find 
relevant visual stimuli. In the earlier implementations, this system was purely top-down 
controlled, but has now been extended with a bottom-up stages that recodes the input image 
using a visual alphabet. 
 
In object recognition, the schemas are implemented as visual agents that attempts to direct 
processing to different locations in the image. By reading the letters from the visual alphabet 
at each location where object relevant information is predicted to be located, each agent 
gradually tries to confirm its expectation of an object. These ideas could potentially be very 
powerful in any system that has to interact with the real world. According to this view, 
perception is the act of confirming predictions of the world. 
 
Drescher Drescher’s Schema Mechanism (Drescher 1991) is a constructivist mechanism 
inspired by the work of Piaget (1954); it represents an object as a set of expected interactions 
with the environment. The SM learns to anticipate the consequence of its actions by creating 
three parts schemas “context/action/result”; contexts and results are items (propositions) that 
can assume the values “On” or “Off”. 
 



Nome file: D3_1.doc 
Data: 13/07/2005 
 
 

         25/
41 

 

The Schema Mechanism performs mainly two operations: Empirical learning and Concept 
Invention. Empirical learning consists in finding a result item that is relevant to an action, as 
well as context items that make the result reliable (it uses a statistical method called marginal 
attribution). Concept Invention consists in postulating/reifying synthetic items (objects, not 
directly sensed) as the “cause” of the perceptions; this property permits to improve the 
ontology of the system. 
 
The original SM accommodates only binary-valued sensors; but recently it has been extended 
to continuous values. It has also no parameters: each schema is unique (this poses many 
scalability problems). It can in learn POMDP environments, as shown in Holmes and Isbell 
(2005). It focuses on sensory rather than reward prediction. 
 
Rybak et al. Another type of anticipatory mechanism is included in the model of attention-
guided visual perception proposed by Rybak et al. (1998). This model is able to recognize 
visual stimuli using behavioral recognition programs that suggests attentional movements and 
the expected image fragments that will be perceives at each image location. 
 
DUAL DUAL (Kokinov, 1994) is a general-purpose cognitive architecture which comprises a 
unified description of mental representation, memory structures, and processing mechanisms. 
All these aspects of the architecture are organized around a small set of principles: 
 
(1) Emergent computation. All processing and knowledge representation in the architecture is 
carried out by a cohort of small entities called DUAL micro-agents. There is no centralized 
executive that controls the whole system, or makes large-scale decisions, allocates resources, 
resolves conflicts and so on. Instead, small-scale DUAL agents interact with one another, 
locally, and the global behavior of the system emerges from the self-organizing pattern of 
these interactions.  
 
(2) Micro-Level Hybridism. DUAL integrates the symbolic and connectionist approaches in a 
horizontal manner at the level of micro-agents, this means that each micro-agent has two 
parts: the symbolic part of the agent represents its knowledge while the connectionist part of 
the agent represents the current relevance of this piece of knowledge. The micro-agents are 
dualistic in another respect as well: they represent some declarative knowledge, but at the 
same time they are also processing units that act by sending messages, activation, etc. and in 
this way embody some procedural knowledge. 
 
(3) Dynamics and context-sensitivity. An important feature of DUAL’s operation is that it is 
constantly changing in response to influences from the environment. This is possible due to the 
emergent nature of the processing that underlies DUAL’s operation and to the lack of rigid and 
pre-programmed specification of the computation. In particular, there is no sharp boundary 
between the ‘task’ or the ‘problem’ given to the sys¬tem to solve, and the ‘context’ that 
accompanies this problem. One and the same problem can be solved in different ways during 
two successive runs of a DUAL-based model, in spite of the strictly deterministic character of 
the architecture. 
 
AMBR The AMBR model (an acronym for Associative Memory-Based Reasoning) is a cognitive 
model of analogy-making based on the DUAL cognitive architecture (Kokinov, 1988). It has 
been implemented in LISP and simulation experiments have been performed with it and 
compared with human data. A number of predictions have been generated with this model and 
later on confirmed by psychological experiments. The AMBR model: 
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(1)Integrates memory and reasoning by implementing both retrieval of episodes and mapping 
between the base episode and the target episode within a single model and using the same 
basic cognitive structures and operations (from DUAL). 
 
(2) Has internal dynamics – implementing a mechanism of state evolution that allows the 
previous states of the system to influence the specific computation that will emerge with given 
input. In this way the model explains and predicts priming effects. 
 
(3) Is context-sensitive – changes in the environment that are reflected in the input of the 
system can influence the emerging computations even if they are not directly relevant to the 
task. The model has predicted certain context effects that have been confirmed in 
psychological experiments. 
 
(4)Is parallel and interactive – this means that various subprocesses (like retrieval and 
mapping) run in parallel and influence each other thus allowing complex interactions to be 
explained. 
 
Butz et al. Butz et. al. have developed a schema-related mechanism in their anticipatory 
classifier system (ACS)  architecture. The system develops three-part situation-action-effect 
schemata. The learning algorithm  a combination of an information theoretic specialization and 
a genetic generalization mechanism  showed to be able to solve challenging maze, blocks-
world, as well as classification problems (Butz, Stolzmann, Goldberg, 2002). Additionally, the 
mechanism is able to ignore irrelevant inputs. It identifies those features that are necessary to 
predict feature change, caused by the specified action, accurately. Attentional mechanisms 
may thus be incorporated naturally by using the representation (1) for enhanced feature 
processing as well as (2) faster relevant feature detection. Besides the learning and 
generalization capabilities, it should also be mentioned that Butz and Hoffmann (2003) showed 
that the ACS can simulate the behavior of rats. The simulation showed that in order to account 
for the observed behavioral patterns, anticipatory adaptive processes are mandatory, since 
similar behavior could only be generated if the predictive model in ACS was used to adjust 
behavior. 
 
Discussion 
 
Schema models are the most expressive type of system that can be used for anticipation. The 
main question for schema based systems is how schemas can be automatically created, 
learned and generalized to new situations. It is  possible that hierarchical reinforcement 
learning methods together with anticipatory components may be able to learn complex 
schemas in the required way, but this is an area for future research. 
 
Schema based models offers many interesting possibilities for attention and control but most 
of these have not yet been investigated. An interesting aspect of schemas models is that they 
have  certain similarities to hierarchical models and it would be very useful to investigate to 
what extent hierarchical models can be seen as instances of schema architectures. 
 
7 Context 
 
Although `context' is a term that originates in literary studies, it has recently gained an 
increased interest also in other disciplines. The role of context in different forms of cognitive 
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processing has been extensively described in relation to speech perception (Altmann and 
Steedman, 1988, Lee, 1990), conecpt formation (e. g. Medin and Schaffer, 1978), semantic 
processing (e. g. McDonald and Brew,  2002), learning theory (Bouton and King, 1983, 
Bouton, 1993) and psychiatric disorders (Cohen and Servant-Schreiber, 1992, Balkenius and 
Björne, 2004). Recently the concept has been related to scene perception and the control of 
visual attention (Balkenius, 2003). 
 
Balkenius & Morén Although context plays a role in many models of attention and control, 
the source of the context has seldom been investigated. The goal of the context processing 
model first described by Balkenius & Morén (2000) is to build codes for the current context 
based on sequences of sensory stimuli. One way to build the context codes is to use an 
attention mechanism. The current focus of attention acts as the stimulus while a sequence of 
attention states make up the context. This implies that the context can be controlled by 
choosing how attention is allocated. 
 
The model consisted of four interacting modules (Fig. 20). The binding stage (BIND) used 
distinct events to build bindings coding for stimuli and place relations, which where then 
combined into context codes (CONT). The context in turn was used to form expectations of the 
stimuli that would be present in each environment. These predictions which were stored in a 
memory (MEM) and were used to match the current input to the expected inputs (MATCH). 
When a mismatch occurred new bindings and possibly also a new context was created. 
 
The main target for the mode was to explain how negative priming and inhibition operates in 
classical conditioning, but the mode has also been used to explain contextual cueing and 
spatial habituation. In the later development of the model the binding is done using tensor 
product coding which removes the creation of context codes from the behavioral situation. In 
this model, contexts can still be created when expectations are not met but they can also be 
constructed passively from sequences of input stimuli. 
 

 
 

Fig. 20. The context processing model of Balkenius and Morén, 2000. 
 
Torralba et al. Torralba and coworkers (Torralba, 2002, 2003) have developed a way to 
holistically code a visual context. The method first extracts the main spectral components at 
different locations in the image suing complex Gabor filters tuned to different spatial 
frequencies which produces a high dimensional representation of the image. In a second step, 
this representation is mapped onto a low dimensional representation using principal 
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component analysis. The resulting representation is used to prime spatial attention and object 
recognition. It is used to produce probability density functions for object likelihood, spatial 
attention and local target appearance. 
 
The use of top-down context priming in object detection offers an alternative to the bottom-up 
saliency based approach. 
 
LSTM Another aspect of context is that it can reach over longer times and it is necessary to 
include in the context events that took place some time ago. LSTM (Long Short-Term Memory) 
is a recurrent neural network architecture with a gates-based structure (Fig. 21): input gates 
and output gates guard input/output access to the internal states of neurons, enabling the 
algorithm to maintain memory over longer periods of time (Hochreiter and Schmidhuber, 
1997). This method has been shown to effectively deal with the problem of vanishing 
gradients. LSTM can remember and relate events far apart in history, and could thus be used 
as a prediction tool for anticipatory systems that require long-term memory.  
 

 
 

Fig. 21. The LSTM cell. 
 
The method has the capability to capture long-term time dependencies, but in order to predict 
events far in the future or in order to predict future abstract states, the method probably 
needs to be combined with hierarchical approaches. It is a multi-purpose predictive system, 
with the ability to handle continuous inputs and outputs. It could be used for sensory 
prediction, but also for utility prediction (as has been done for reinforcement learning 
purposes), among other things. Since it is an RNN, standard methods from RNN literature can 
be used, such as error functions that allow us to output probability distributions instead of pure 
predictions per se, or methods to control regularization. LSTM is thus an ideal candidate for 
context that reaches over longer times. 
 
Discussion 
 
The different models offers three types of context that are of important in models of attention 
and anticipation:  
 

• Context as the "gist" of a scene, that is, a spatial simultaneous pattern 
• Context as sequences of stimuli 
• Context as point events that should influence later  behavior. 
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So far, no model has attempted to include all three types of context and such a system would 
constitute a clear step forward. It is possible that context could be included in a similar way to 
other sensory inputs for predictions and anticipation, but is more likely that context must be 
handled in a separate way. 
 
8 Priming 
 
Priming occurs when one stimulus has a positive or negative effect on the processing of 
another stimulus at a later stage. If the two stimuli are the same and the processing is 
enhances, it is a case of repetition priming. If the processing is reduced, it is instead a case of 
habituation. Other types of priming can be categorized as perceptual or semantic depending on 
whether the enhancement is a direct consequence of the perceptual properties of the stimulus 
or of its meaning. 
 
Interactive activation models The earliest connectionist models to investigate priming were 
the different instances of the interactive activation models of McClelland and Rumelhart (1981, 
1982). In these models priming was seen as the result of associations between nodes in a 
connectionist network that coded for different concepts. Positive and negative priming would 
result depending on whether the associations were excitatory or inhibitory. 
 
In this interpretation of priming it is natural consequence of any associative network model 
and there is thus no need to explicitly mention all models that produces priming in this way. 
 
Plaut Plaut (1995) presented a distributed attractor network that was able to model semantic 
and associative priming (Fig. 22). The model produces stronger associative priming than 
semantic priming and associative priming that last even when an intervening item is 
presented. 
 

 
 

Fig. 22. The model of Plaut (1995). 
 
Balkenius, et al. Balkenius and coworkers have developed a model of attention control based 
on reinforcement learning (Fig. 23). The goal of the model is to explain how different learning 
processes contribute to the control of visual attention. There are five main components in the 
model (Balkenius, 2000). A sensory buffer codes the visual input in different ways. This coding 
ranges from the detection of oriented contrasts to object identity. The sensory buffer also 
codes the visual input using a spatial code that allows attention to be directed toward the 
location of a stimulus. A fixed response system R reacts to the location coding in the sensory 
buffer to produce overt orienting reactions. 
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Fig 23. Overview of the Model. 
 
The shift of attention is controlled by two basic learning systems. The stimulus evaluation 
system S* assigns a value to each stimulus based on its reward history and the response 
evaluation system R* assigns values to stimulus-response pairs. Together, the S* and R* 
systems implement an actor--critic (or two-process) architecture for learning (Sutton & Barto, 
1998, Mowrer, 1960/1973). The learning process in S* is classical conditioning and in R* it is 
instrumental conditioning. 
 
In addition, the three modules, S*, R* and R, are influenced by the context system that codes 
the current visual context or situation (Balkenius & Morén, 2000). The inhibitory role of the 
context (Balkenius, 2000, Balkenius & Morén, 2000, Morén, 2002) as been investigated as 
weell as excitatory influences of the context on the response evaluation system R* (Balkenius, 
2003, Chun & Jiang, 1989, Chun, 2000). The model can produce many attention phenomena 
and can operate both in top-down or bottom-up mode. 
 
The model produces priming as a consequence of learning (Balkenius, 2004). When an 
observed stimulus is not rewarded, an inhibitory connection will form from the current context 
to that stimulus representation which will results in negative priming by the context. The 
model is also able to produce contextual cueing when an attended stimulus has been 
reinforced in a specific context (Fig. 24). The context will form excitatory connections to the 
response system that produces saccades to expected target location in the learned visual 
context. This can be seen as a form of positive priming. 
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Fig. 24. The extended context model applied to sequential contextual cueing. A transience detector is 

added to reset the context when the visual scene changes. 
 
Discussion 
 
Although priming in some form is present in many models, there have been few attempts to 
include all types of priming that can be seen in psychological experiments. A minimal 
requirement would be to include positive and negative priming from at different hierarchical 
levels (perceptual/semantic) and between sensory representations ranging from single stimuli 
to contexts. In relation to the goals of the MindRACES project, it would also be interesting to 
study to what priming can be seen as a form of anticipation. 
 
9 Deliberative Agents and Epistemic Actions 
 
BDI models are models of deliberative agents. They have been introduced in philosophy 
(Bratman 1987), inspiring the development of computational models of cognitive agents 
(Rao & Georgeff 1991b) and logical theories of pragmatic reasoning (Cohen & Levesque 
1990, Singh & Asher 1993, Meyer et al. 1999). The main properties of this approach is the 
interest to characterize the functional properties of mental states such as beliefs, desires, 
goals and intentions and to analyse their interrelationships, to define the way an agent 
selects actions to achieve his goals and gets committed to execute the action. In BDI 
models is assumed some kind of decision procedures between actions (as means for 
achieving the goals of the agent) based on probability associated with the beliefs and 
expectations and utility values associated to the goal states (Rao & Georgeff 1991a).  
 
Recent theoretical and formal developments in cognitive robotics and especially in the 
logical theory of belief revision and information acquisition have had a considerable impact 
on modelling the way an intentional agents can acquire information from the external 
world and revise his pre-existent knowledge on the basis of new acquired information (De 
Giacomo et al. 2000; Herzig et al. 2000, Del Val et al. 1997, Reiter 2001; Bacchus et al. 
1995). These kinds of theoretical developments implie the necessity to characterize the 
different sources of information that an agent can question (by means of Epistemic 
Actions) in order to verify his beliefs and predictions (Castelfranchi 1995; Van Linder et al. 
1997), in order to update his pre-existent knowledge or in order to gather further data, 
and consequently the necessity to provide models of bounded reasoning integrating the 
concept of attentional focus (Grant et al. 2000) with respect to stored data, temporally 
bounded inferential process (Elgot-Drapkin et al. 1999) and the distinction between 
explicit beliefs and implicit (potentially derivable) beliefs. 
 
The integration of the notion of Epistemic Action in the BDI framework raise important 
questions with respect to the issue of deliberation. Deliberative agents should be capable 
of choosing between pragmatic alternatives and/or epistemic alternatives. At each round 
they should be able to decide to do some pragmatic action (movements) or to get new 
information by doing appropriate tests to the external environment and by focusing the 
attention on stored data. 
The problem of concurrence between epistemic actions and pragmatic actions in the 
selection of plans and policies has already been considered in the design of Partially 
Observable Markov Decision Processes (Kaelbling et al. 1998), and give insights with 
respect to the way a deliberative agents evaluates a piece of information as a relevant 
(and valuable) one. 
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Finally, the development of theoretical and practical models for deliberative agents using 
confidence and implicit trust is a very new and challenging field of study in the AI 
(Castelfranchi and Falcone, 1998a; Castelfranchi and Falcone, 1998b; Falcone and 
Castelfranchi, 2001). In particular, a very relevant problem is the analysis of an agent 
action as a sort of (implicit or explicit) reliance on the world with a given quantitative 
value about the expected results (and governing both the decision and the epistemic 
control). 
  
Discussion  
 
Integrating a model of Epistemic Actions with the general BDI models represents a 
relevant achievement of the research in computational modelling of deliberative agents. 
Theoretical improvements are needed in order to model agents with the capacity to 
actively test the external environment (in order to gather external data), to actively focus 
their attention to internal data and to make inferences on the internal focused data. 
Moreover, an extension of BDI models to cover Epistemic Actions is relevant for designing 
agents that can plan to execute standard pragmatic actions in order to verify (by means of 
epistemic actions) both their ability to do those actions (this is the essential structure of 
every intentional trial in the sense of Anzai & Simon 1979) and at the same time the 
reliability of the environment and of mediating processes (with an explicit/implicit 
feedback on their trustworthiness). 
 
 
10 Conclusion 
 
Several promising research directions come to mind considering anticipatory mechanisms in 
attention, monitoring and control. 
 
One interesting development  would to be the enhancements of the rule-based schemas in 
ACS to (1) more NN-based structures and (2) to hierarchical structures. It is intended to 
combine the expertise of ACS on discrete processing mechanisms with processing mechanisms 
in continuous domains. Rules in ACS provide confidence values, so that another challenge is to 
combine rule bases hierarchically, where the higher levels predict activitiy in the lower layers. 
Research is in progress towards these directions. 
 
The most interesting aspect is the coupling of action control mechanisms with sensory 
processing control. Schema mechanisms are the most straight forward, rather symbolic-based 
approach. The coupling of schema-based ACS structures with lower level forward model, 
emulator-like structures poses the biggest challenge to the MindRACES project and may yield 
most promising results in the mean time. 
 
Another important development will be in the area of contextual anticipatory control of real-
time attention in dynamical scenes. This involves both an individual robot looking at complex 
events and multiple robots interacting in a dynamical environment. The use of context 
sensitive hierarchical anticipatory systems controlled by reinforcement appears to be an 
especially promising area for future research. 
 
In summary, the aim of the future research will be to merge the abilities of systems for (1) 
top-down and bottom-up control, (2) reinforcement learning, (3) dynamical perception, (4) 
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schemas, and (5) context. It is clear that anticipation plays an important role in this 
development. 
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