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Abstract

An important strength of learning classifier systems (LABs)in the combination of genetic optimization tech-
niques with gradient-based approximation techniques. cHosen approximation technique develops locally optimal
approximations, such as accurate classification estim@eslue predictions, or linear function approximations.
The genetic optimization technique is designed to distelibese local approximations efficiently over the problem
space. Together, the two components develop a distribled|ly optimized problem solution in the form of a
population of expert rules, often called classifiers. Inction approximation problems, the XCSF classifier system
develops a problem solution in the form of overlapping, pwise linear approximations. This paper shows that
XCSF performance on function approximation problems addit benefits from (1) improved representations, (2)
improved genetic operators, and (3) improved approximatézhniques. Additionally, this paper introduces a novel
closest classifier matching mechanism for the efficient @wtipn of XCS’s final problem solution. The resulting
compaction mechanism can boil the population size down 19 80 average, while decreasing prediction accuracy
only marginally. Performance evaluations show that thdtexhél mechanisms enable XCSF to reliably, accurately,
and compactly approximate even seven dimensional fureti®arformance comparisons with other, heuristic function

approximation techniques show that XCSF yields competitiv even superior noise-robust performance.

Index Terms

Learning classifier systems, LCS, XCS, function approxiomthyperellipsoids, condensation, compaction, self

organization, neural networks.
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I. INTRODUCTION

Learning classifier systems (LCSs) are rule-based, eweolaty learning systems that are designed to efficiently
combine gradient-based approximation techniques withuéeoary optimization techniques. The XCS classifier
system, introduced by Wilson in 1995 [1], may be regardedhasriost prominent learning classifier system (LCS)
to-date. XCS is an accuracy-based LCS that it is designedato Imaximally accurate predictions for any given
input and available action combination. Its function apjmaation form, XCSF [2], [3], develops overlapping,
piecewise-linear function approximations.

It was shown that the combination of local gradient-basetinopation and global, evolutionary-based op-
timization in XCS(F) yields a flexible, iterative learninggarithm. XCS was successfully applied to large
binary classification tasks [4], [5], [1], [6], real-worldathmining problems [7], [8], [9], [10], [11], challenging
reinforcement learning problems [9], [12], and functiormpeagximation problems [3], [13], [9]. These successful
applications confirm the flexibility of the XCS learning aiteltcture. Moreover, theoretical analyses of XCS have
confirmed that the system is guaranteed to evolve accuratdgm solutions for a wide range of problems with
high probability in polynomial time [14].

Most recently, extensions of XCSF have focused on improwngdition structures as well as predictive
capabilities. Condition structures have been modified pvegent and evolve different hyperrectangular structures
[15], [11], [3] as well as other condition structures indlugl various spheroids [16], [9], [17], convex hulls [18],can
tile codings [12]. Linear approximations have been extertdgolynomial predictions [13]. Moreover, the predictive
capabilities have been improved by replacing the origieast-mean-square delta rule [19] with the pseudo-inverse
method, recursive least squares (RLS) method [13], [20Kkaman-filtering-based approximation techniques [21].
Additionally, the XCS framework has been successfully comath with pure NN-based approximation techniques
[22], [23].

This paper aims at putting these advancements in perspectimparing hyperrectangular with hyperellipsoidal
condition structures on a variety of function approximatioroblems. We examine the improvements achieved
due to both the modified condition structure and the imprdimear approximation technique, that is, RLS. The
introduced improvements confirm that XCS performance caadmbtively optimized (1) in its space partitioning
representation, (2) in the evolutionary operators, andn3he linear approximation technique.

Moreover, this paper addresses problem solution compacimce XCSF relies on a population-based learning
technique (the evolutionary learning component), probkssiutions are represented redundantly by multiple,
similar, strongly overlapping classifiers. Thus, an impottpart of LCS-based approximation is effective popufatio
compaction [24], [25]. To develop a final, complete, but caectproblem solution, we introduce a novel compaction
approach, which relies on a competitive matching mechanismedclosest classifier matchin@ he results show
that compaction works highly effective. During compactitre population size often decreases by &&h while

hardly affecting function approximation accuracy.



Finally, this paper compares XCSF performance with othection approximation techniques available in the
literature. We show that XCSF clearly outperforms pure teltisg mechanisms, exemplified in the Neural GAS
architecture [26], [27]. We also show that XCSF evolves sohs similar to those generated by a constructive,
incremental learning approach [28] as well as similar to meremental learning linear model tree algorithm
[29]. Performance is competitive showing successful gairation capabilities, accurate approximations, and@oi
robustness. In comparison to the other algorithms, thoX@I8F is the most flexible learning algorithm, applicable
to a large variety of problems.

This paper is structured as follows. First, we give a shdrbatuction to the XCSF system. Next, we show how
hyperellipsoidal condition structures can improve sysgerformance. Following that, we show the more robust
RLS technique for linear approximation. Finally, we intuog the compaction mechanisms. A performance suite
on functions of up to seven dimensions confirms the strengdhrebustness of the introduced mechanisms. Finally,
we compare XCSF with the Neural GAS clustering algorithm twal statistical, incremental learning approaches.

Summary and conclusions put the results in a broader peigpec

II. XCSF OVERVIEW

XCS is a typical Michigan-style learning classifier systetC$§) [30], [31]. The following introduction of
XCS describes the enhanced XCS system for function appaiidm often termed XCSF [11], [3]. For detailed

information on XCS the interested reader is referred to therdahmic description of XCS [32].

A. Representation

XCSF is a function approximation system that evolves oygileg, typically piecewise linear function approxi-
mations. Given at timeé an input vectotz; = (z1, ..., z,) € S C £, XCSF determines its function value prediction
P and receives as feedback the actual function vgJublsing this information, XCSF iteratively evolves its stidun
representation within a population dfssifiers(condition-prediction rules). Each classifier specifiegsrcondition
part its applicability, and in its prediction part its furmt value prediction—typically a linear prediction. ThuE€®F
is a locally weighted learning approach [33], but one in wahilce local rule structures (classifiers) evolve by the
means of a genetic algorithm. The classifiers partition tipaii space into overlapping, piecewise linear prediction
surfaces. The resulting smoothed surface forms the fumetproximation surface.

More formally, a classifier in XCSF consists of a conditi6h a predictionR, a prediction errore, and a
fithess valueF'. (1) The condition partC' specifies a hyperrectangle by the means of interval encotliag is,

C = (1a) = ((Iu,lz, ., 1)7, (w1, ug, ..., un)T), where” denotes the transposé nd @ are column vectors).
(2) The predictionR specifies a linear prediction of the input vectarin the form of a weight vector, that is,
R = @ = (wo,ws,...,w,)T wherew, is the offset weight. The prediction is determined by theeinproduct

(% — 1*)Tw where vectors:* and* are vectorst andl, enhanced with a leading one and zero, respectively. (3)



The prediction errog estimates the mean absolute deviation of the reward predict(4) The fitnes$’ specifies the
relative predictive accuracy of the classifier. While thadition parts evolve by the means of a genetic algorithm,

the other components are iteratively approximated by thstimean-square update technique [19].

B. Gradient-Based Rule Updates

Each learning iteration, XCSF generates a match[&Bt that contains all classifiers whose conditions match
the input vectorz;. The match set is used to generate the function value piedicBiven input vector:;, each
classifiercl forms the predictioni. P, = (z7 — cl.I*)Tcl.15. The fitness-weighted average of the predictions of all
matching classifiers denotes the function value predictioat is, P, = > . ¢.Pic.F/ 32 cpan ¢ F .

The error signal to update reward prediction, predictionreand fitness is the error between a classifier prediction
and the actual valuey, — (z; — [*)T@. Each classifier iffAM] is updated according to its error signal using the

delta update rule:
@ — s — (2 — )T ) (e — ), @

wheren denotes the learning rateThe reward prediction error approximates the mean absdlexetion of its

prediction by the following delta rule:
e ety — (a7 — 57| - ¢) (2)

Classifier accuracy is determined by the scaled inverseetthor, whereby classifiers with mean absolute error
lower thane, are considered completely accurate. The fitness value igedefrom the relative classifier accuracy
in [M] [32]. Thus, fitness reflects the current predictive qualityacclassifier in comparison to all overlapping
classifiers. The evolutionary algorithm selects classiftlspendent on their current fithess values. After rule @sdat

and possible GA invocation in the current match set, the iesdtion begins.

C. Rule Structure Evolution

XCSF is initialized with an empty population. Initial cla$srs are generated by a covering mechanism that
creates a matching condition given a problem instafider which no classifier matches. The resulting interval
size lies betweeB and 2rq uniformly random in each dimension, wherg is an additional XCSF parameter that
determines the width of initial classifiers.

Most classifiers (i.e., classifiers not generated by coggrare generated by the evolutionary component for
which XCS applies a steady-state, niche GA. A GA is invoketh& average time since the last GA application

upon the classifiers if\/] exceeds a thresholil; 4. The GA selects two parent classifiers from the current match

1wilson [3] used a modified delta rule, instead, to stabillm update mechanism. Comparative runs did not show anyrpefae differences
in the experiments reported in this paper.



set[M] using set-size-relative tournament selection based onl#ssifier's fitness estimates [4]. Two offspring are
generated from the selected parents. Each attribute offthigring conditions is mutated with probabilify. In the
hyperrectangular representation, mutation alters theelaw upper boundary by increasing/decreasing its stretch,
maximally doubling/halving the covered interval, respaay. For recombination, we utilize uniform crossover, in
which any corresponding values in the two classifier coadgtiare exchanged with probabilidys.

Before the offspring are inserted in the population, twesifiers may be deleted to keep a fixed population size
N. Classifiers are deleted frof#] with probability proportional to an estimate of the size loé tmatch sets that
the classifiers occur in. If the classifier is sufficiently expnced and its fitnesE is significantly lower than the

average fithess of classifiers [[R], its deletion probability is further increased [34].

D. XCSF Learning Intuition

As can be seen, XCSF relies on the following two major leaymiomponents: (1) The gradient-based component
generates linear approximations and estimates classifity bhased on the relative accuracy of the generated linea
approximations. (2) The evolutionary component relies fwase utility estimates (represented in classifier fitness)
to evolve better classifiers by reproducing more accuratssiiers and deleting less accurate ones (on average).

The interplay between the two learning components is crimighe development of the evolution of an effective,
global solution. The gradient component needs to produrssifier utility guesses as fast as possible in order for
XCSF to propagate more accurate classifiers effectivetefand more reliable estimates avoid misleading signals
for the evolutionary component. On the other hand, the éwlary component needs to evolve better classifier
structures as fast as possible for the task at hand. This goa@n for representational and operator improvements
on the GA side. In Section Il we investigate the interplaytioése two mechanisms. We show how important
an effective representation of conditions, plus fast amtlieate parameter estimates are for quick, accurate, and
reliable learning.

So far we have seen that XCSF is designed to evolve acculate fBeneralization is achieved by a continuous
generalization pressure [5], [1] due to classifier repréidacin [M/] and deletion from/P]. Since more-general
classifiers match on average more often than the averaggfidas [P, they are reproduced more often. Moreover,
reproduction in[M] has a niching effect ensuring that only related classifirictiires are recombined. Finally,
the mechanism also ensures complete coverage of the ercedimroblem space since overrepresented subspaces
undergo more deletions while reproduction is occurreraset [35].

In sum, the evolutionary mechanism is designed to evolvetioas in which linear approximations are maximally
accurate. The gradient descent-based algorithm is reigp@ifier estimating the suitability of the current partitie
Thus, XCS applies a distributed, local search mechanisnboong evolutionary techniques with gradient learning
techniques to find a global problem solution. As a whole, X€&es to evolve complete, maximally accurate, and

maximally general function approximations representeisirpopulation of classifiers.



Due to this combination of gradient-based and evolutioitsmsed learning techniques, XCSF is particularly
applicable in problem domains in which gradient technigalesme are not guaranteed to converge to an optimal
problem solution, or in which problem partitions are reqdirthat cannot be shaped by gradient information. In
XCS, gradient information is only necessary to yield logalptimal approximations. The development of a suitable
space partitioning, which yields a globally optimal sabutiin conjunction with the local approximations, is the
responsibility of the evolutionary learning component.

From a machine learning perspective, XCSF can be comparédrtdive clustering mechanisms. In principle,
it works similarly to an expectation maximization (EM) atgbhm [36]. The expectation step is accomplished by
the matching technique in combination with classifier pcedhs. The maximization step is realized by the genetic
algorithm, which depends on accurate parameter estimdesby, not only a pre-defined cluster distance measure
is maximized but also the accuracy of classifier predictidigs makes XCSF an iterative clustering mechanism
that clusters the input space for the generation of maxjnadturate predictions. Performance comparisons with
the Neural GAS algorithm [26], [27] in Section V-D.3 confirtmat XCSF is able to generate much more accurate
and general function approximation representations.

Before we compare XCSF to other function approximation méples, though, we investigate performance on
a set of two dimensional functions and subsequently show pe#ormance can be improved in approximation

accuracy and in solution compactness.

E. Performance on 2-D Functions

We now show how XCSF evolves accurate function approximatio exemplary 2-D functions. In the subsequent
sections we then show how learning in XCSF can be improvedemgiting hyperellipsoidal condition structures,
enabling efficient search through these structures, andowing the gradient-based approximation mechanism.

We first test unenhanced XCSF on the following functions ligsitate its general approximation performance:
fi(z,y) = sin(2n(2)) + sin(27(y)); fa(z,y) =sin27(z +y)); fs(z,y) = sin(dn(z +y)). ®3)

All three functions are continuous and continuously défgrable. The domain of all functions in this paper is
S =[0,1)™. Figure 1 shows the three functions. Functjfinis a simple sine function, in which each dimension is
independent of the others. In functiofis and f3, the dimensions are interdependent. The sine wave liegua}i
in the two dimensions. Functiofy makes the problem harder since four full sine waves lie inptteddlem domain.

It is interesting to note that Functiofy actually resembles a checkerboard problem [37], with tdeiside
lengths in the grid. That is, each dimension contributesh® golution independently. Thus, to reach a certain
accuracy, the sine function needs to be suitably partiddneeach dimension, dependent on the curvature of the
sine wave. These partitions are independent in each diovenssulting in the checkerboard layout. In functigias

and f3, the partitionings rather resemble uniform, oblique salesg. Figure 1 indicates curvature-dependent space



partitions. These partitions can be expected to be appairitnwith any piecewise linear function approximation

mechanism - albeit with varying granularity and exactness.
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Fig. 1. The axis-parallel sinusoidal functiofh as well as the axis-diagonal sinusoidal functifn appear similarly difficult, whereas the
increased curvature in the axis-diagonal sinusoidal fancfs results in a less accurate approximation, a longer learaffat, and a larger
number of distinct classifiers.

Predictive performance of XCSF is shown in Figuré Phe runs start with a fairly general population allowing
the genetic pressure and mutation to introduce more spaabffspring. The parameter values are nearly identical
to the values chosen in Wilson’s work [3]. Functignis learned best, resulting in a low error of abdit—slightly
above the error threshotd = .01. The axis-diagonal functiof; is initially slightly easier to approximate, due to its
smaller y-value range. While learning proceeds, the pdipmaize rises to a higher level and the prediction again
just reachesD2. When we double the number of sine waves (functfgy approximation capabilities strongly break
down: accuracy performance does not even get close to thetéak01 accuracy level. Due to the obliqueness of
the function, the hyperrectangular conditions make it tarelolve an effective space partitioning. Also, populatio
sizes do not decrease, indicating that no appropriate gkzegions in the space partitions are found.

The learning rates slightly influences approximation performance furthertHa case of large# values, learning
is slightly delayed, most likely due to the higher variancériitial classifier estimates. Later, though, more stable
performance can be observed. The larger number of macrsif@as indicates that a largeét value causes more
variability in the population.

The results indicate that the hyperrectangular structoes chot appear to be suitable for the approximation of
smooth functions. Especially when the function lies obdilyuin the two dimensions, performance breaks down
quickly. Due to the corners of the hyperrectangles, strangelap effects can be expected to distort the function

approximation capability.

2All experiments herein are averaged over 20 experimentsoifstated differently, parameters were set as folloWs= 6400, 3 = .1,
n=.5 a=1e¢0=.0l,v =504 =50, x =10, u=.05 19 =1, 03¢ = 20, 6 = 0.1, 05, = 20. GA subsumption was applied.
Uniform crossover was applied. The error bars and numeticghlues indicate the respective unbiased standard deviaitues.



I11. I MPROVING CONDITIONS AND PREDICTIONS

To eliminate unsuitable overlap effects and consequemtive smoother approximation surfaces, we now enable
the evolution of ellipsoidal condition structures showihgir effect on function approximation performance. The
resulting general hyperellipsoids do not have the unslyitaderlapping corners of the hyperrectangles, nor do they
need to have an axis-parallel orientation. Additionallyy show that the predictions can be accurately estimated

faster by using the recursive least squares (RLS) apprdidima

A. Axis-Parallel Hyperellipsoids
First, we enable the evolution of axis-parallel hyperaliijplal structures. Conditions are now represented by

T

), 4

C = (11,8) = (M1, ey mn) T, (01, ey )

where the column vectors: and ¢ indicate the center of the ellipsoid and the deviations i rthdimensions,

respectively. A Gaussian kernel function is used to deteentive current activity of a classifier:

n

cl.act = exp (— Z %) ) ()

=1
effectively dividing in each dimension the squared distafiom the center by twice the variance in that dimension.
A classifier is considered part of the current match set ifitvity cl.act lies above the threshol@,,, which is
set t0.7 throughout the experiments (which corresponds to a radiug84d within which the classifier matches,
given all o; = 1). To form classifier predictions, the zero-enhanced lowairmidl of the conditiori* of Equation 1
is replaced with the similarly enhanced center .

The following other parts of the learning mechanism of XC3€ affected by the changed condition structure
representation: (1) the covering mechanism, (2) mutatiod erossover, and (3) the subsumption mechanism.
Covering sets the center of the conditiofi)(to the current instance value}). Entries of the deviation vectaf
are each chosen independently, uniformly randomly betweeo andry (excluding zero). During mutation, each
attribute in the condition part is mutated with probabilitylf an attribute of the center is mutated, the new vahfe
is set to a value uniformly randomly chosen in the interveldtassifier applies in, that isp; —m?| < o;v/—21In0,),.
The standard deviation values are either increased or decreased (equally likely), makmndaubling or halving
the values. If any; is larger than the deviation necessary to contain the whalklem dimension, it is set to that

value, that is:
ul — 1

v—21nb,,’

wherew} andl} denote the maximum and minimum value of problem dimensj@aspectively. Uniform crossover

(6)

Vi:o; <

treats all values independently exchanging values with0% probability. During subsumption, a classifier is

considered more general, if it completely contains the rotfessifier in alln dimensions considered separately.
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Fig. 2. XCSF is able to learn the three test functions withgasingly
less success. The axis-parallel sinusoidal functferas well as the
axis-diagonal sinusoidal functiofy appear similarly difficult whereas
the increased curvature in the axis-diagonal sinusoidattfon f3
results in a less accurate approximation, a longer leareffayt, and
a larger number of distinct classifiers.
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Fig. 3. Hyperellipsoidal conditions alleviate the problesh un-
suitable overlaps due to the original hyper-rectangulpregentation.
Higher accuracy is reached faster by XCSF with axis-pdrdilger-
ellipsoidal condition structures. Nonetheless, in thdcula, strongly
curved function f3, the targeted accuracy level dofl is still not
reached.



Performance on the test functiofis f2, f3 (Figure 3) shows that the hyperellipsoidal structuresrteautperform
the hyperrectangular structures (cf. Figure 2). In the-prisallel sine functiory,, performance reaches the targeted
accuracy level of01. Also in the axis-diagonal functiong and fs performance reaches higher accuracy. However,
in the harder oblique functiorfis, the targeted maximum error dil still cannot be reached.

Despite the improvements, performance still remains isfaatory in functionfs;. One big problem of the axis-
parallel hyperellipsoidal encoding is that the orientatad the hyperellipsoids cannot account for the obliqueness

in the function. Thus, we now proceed and enable the rotatidhe developing hyperellipsoid in the input space.

B. General Hyperellipsoids

To enable rotation of the hyperellipsoids, we endow the @@rdstructure with a full transformation matrix that

enables stretching and rotation of the evolving hyperadligal structures. A condition is now defined as:
C= (my E) = ((mh ma, ..., mn)T7 01,1,01,2---, Un,n—lo'n,n); (7)

wherem denotes the center of the hyperellipsoid and mafrithe transformation matrix of the condition. In this
way, each condition effectively defines its own space tramsétion encoding separate Mahalanobis distances [33]
in each classifier.

The consequent activity of a classifier is now defined as:
(& —m)T8T8(z - m))

- (®)

cl.act = exp <—
effectively multiplying the full transformation matrix Wi the vector differenc& — mi. The general hyperellipsoid
coincides with the previous axis-parallel hyperellipsdidvalues are only encoded on the diagonal of the
transformation matrix. As before, a classifier matches argiinput if its current activity lies above threshold
O

In covering, the center of the hyperellipsoid is set to therent value. Only the diagonal entries in the matrix
are initialized to the squared inverse of the uniformly ramtly chosen number between zero aRd The inverse
is chosen to mimic the initial size of the axis-parallel hygdkpsoids. All other matrix entries are set to zero.

Mutation is similarly adjusted in that each matrix entry istated separately, maximally decreasing (increasing)
the value bys0%. If the value is still zero, it is initialized to a randomly@$en value as in covering for the diagonal
matrix entries considering parametes. The values of the matrix entries are unrestricted. Unif@nmssover is
applied to alln + n? condition part values.

To decide if a classifier is contained by another classifigingusubsumption, we use an approximation. A
classifier is considered more general than a second clagsifie condition part contains the point on the outside
surface of the other ellipsoid that lies beyond the midpoirthe other classifier. Figure 4 illustrates several cases.

Performance of XCSF with general hyperellipsoidal cowndisi in functionsf,, f2, fs is shown in Figure 5.

Function approximation is improved in the cases of fundign and f3; since it is possible to rotate the general

10



Fig. 4. During subsumption, an ellipsoid A is considered engeneral than ellipsoid B, if A contains the point at whick #longation from
the center of A through the center of B intersects the surédd®. Elongations are indicated by dotted lines. Ellipsaidat can be subsumed

by the big white ellipsoid are in light Grey, others in darkegr

hyperellipsoid in the input space. Thus, there are lessiglie overlaps and the classifier orientation can suitably
rotate to enable even more accurate approximations. Howeagning still takes a considerable amount of time.

The next sections show the effects of further improved disrdiapproximation and parameter estimation.

C. Explicit Representation of Ellipsoidal Orientation

So far, hyperellipsoids are represented by a transformatiatrix >, which implicitly encodes stretch and angular
orientation of the represented hyperellipsoid. This letms redundant encoding of the actual hyperellipsoidal
structure. Such redundant encodings have been shown ton®fidial sometimes [38], since the encoding can
open up additional paths through the problem space the tamodury process can exploit. However, as shown in
Figure 5, the evolutionary process is still rather slow. Tedundant encoding seems to slow down evolutionary
progress since (1) mutations of entries in the transfoonatiatrix may cause strong and often misleading changes
in the hyperellipsoidal structure, (2) crossover may beugisve possibly generating two unsuitable ellipsoidal
structures out of two currently useful ones, and (3) unremgsdiversity can hinder effective evolutionary progress
since reproductive opportunities of successful classstenctures may decrease [4]. Thus, we now enable the
more explicit evolution of stretch and angular orientatafrthe hyperellipsoidal structure in order to speed up the
evolutionary progress.

In the case of the axis-parallel representation, we alrdedlan explicit stretch representation of the ellipsoid
in each dimension. Thus, as in the previous case, we now agpiasent stretch with vectér= (o4, ...,0,)7. To
represent rotations properly, we need to repre@)fangles to define unique angular rotations with respect th eac

axis. Thus, we replace the previous covariance matrix sgmtation of the condition with the stretch vectand a
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vector of transformation anglesof size (g) The necessary rotation matrices and consequent trareiormmatrix

is then derivable from the angular vector. In 2-D and 3-D,ridtation matrix can be derived directly from the Euler
angles [39]. In higher dimensions the rotation matrix cardbgermined by multiplying together tl*@) rotations
with respect to each of the hyperplanes. We consequentlglendCSF to explicitly evolve the hyperellipsoidal
representation instead of evolving the orientations gatly within the transformation matrix representation.

The angles are initialized to zero upon covering, esséntihrting the learning progress with axis-parallel
hyperellipsoidal structures. Mutation alters the anghesituniform random number frof-7pg, T10]. The angles
are constrained to lie if—2w, 27]. The representation still allows redundant encodings: &ample, in two
dimensions an ellipse with streteth; = 2 and my, = .1 and angle0 (or 27) is equivalent to another ellipse
with stretchm; = .1 andms = 2 and angler/2 (or —37/2). Crossover applies to each angular value separately
applying uniform crossover.

Figure 6 shows the performance of XCS with rotating hypgrsdlids in the three test functions. Performance
improvements occur in the diagonal sinusoidal functfgrand are even more pronouncedjify compared to the
runs without explicit rotation (cf. Figure 5). In the axisspllel sinusoidal function, performance is not affected
since rotations are unnecessary in this case. Nonethdkgssndent on the learning raieapplied, accuracy remains
rather noisy indicating that the prediction value appradions could be further improved. Thus, we now add the

recently introduced RLS approximation technique to XCSapeeter estimation.

D. More Accurate Approximations using RLS

Recently, the delta rule update of the prediction part (Eiqoal) was replaced by the pseudoinverse method [13]
and RLS [40]. RLS is known to yield fast and stable paramgtpr@imations due to the utilization of second-order
gradient information [41]. The resulting approximationsres shown to yield more suitable linear approximations
in XCSF [13] while decreasing the parameter estimationavene [21].

To implement (linear) RLS in XCSF classifiers, a matkix(of size (n + 1) x (n + 1)) needs to be added to
each classifier. The update of XCSF with RLS is done as foll@Brgen the current inpuf and the target value

y, RLS updates the weight vectar by
@ — B+ K[y — (@ —m*)) ),

where, & is the gain vectorcomputed as

T (% _ g%
- _ \% (f: m )_’ . ©)
A+ (z* — m*)TVT (x* — m*)
while matrix V' is updated recursively by,
vT = A1 Rt - nf*)T} VT, (10)

Parameter\ denotes the forget rate for RLS, wheke= 1 denotes infinite memory. A value less than one leads

to “forgetting” of values in the (distant) past consequgrghabling continuous adaptivity but also potentially
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Fig. 5. General hyperellipsoidal conditions further imgroper- Fig. 6. Quickening the evolutionary process by enablinglieitp
formance compared to (restricted) hyperellipsoidal coo. Also ellipsoidal rotations speeds up learning progress and finaliracy

the number of distinct classifiers slightly decreases. dlgh all in functions fo and f3. Performance is still rather noisy, though.
runs reached an accuracy level beldt after 400k learning steps, Population size does not appear to change compared to rtimsuvi
learning progress still seems rather slow. explicit rotation.
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introducing unintended instabilities [41]. MatriX (avoiding the often used inverse computation) can be liziéd

by the scaled identity matrix, as suggested elsewhere [21];
V = 6151, (11)

wherel is the identity matrix of dimension + 1 andJ,;s > 0, where large®,;s; values introduce less bias to the
initial weight vectorw (if not stated differentlyA = 1, 4,5 = 1000 in the experiments reported below). Note that
RLS is a special case of Kalman filtering for the case of a fixeget state in which no control signal is applied
to the state variables (that is, the weight veai)r

Figure 7 shows the resulting performance on the three testifins. Performance accuracy generally improves
in all three functions compared to runs without RLS (cf. FeggyB). This indicates that more accurate predictions are
formed independent of the orientation of the function. Alsarning speed increases suggesting that RLS is able to
deliver suitable prediction estimates faster than thectijeadient-based update mechanism. Figure 7 also compares
different initialization values of matri¥” during classifier generation (during covering or GA) andedéntd,
values. It can be seen that a forget rate\ef .99 is advantageous if the matrix diagonal is initialized with, = 1.
The smallé,;; biases the weight updates towards the initial weight ggtfirhis can be alleviated by the forget
rate. However, it can also be prevented by initializing thatnim diagonal with larger valueg.;; = 1000. In this
case, the forget raté has no additional positive influence but actually can caesgpbrary instabilities (Figure 7
right bottom graph). Nonetheless, in dynamic problems inctvithe function or concept values change over time,

a forget rate\ below 1 might still be advantageous.

IV. RULE-SET COMPACTION

Despite the accurate and reliable performance of XCSF witB Bpproximation and rotating hyperellipsoidal
representations, the final population sizes of XCSF sugtiest the function is overrepresented with highly
overlapping classifiers. Thus, we now introduce a new cotigragnechanism to XCSF. The mechanism can
compact the population of XCSF by oved% while influencing accuracy of performance only marginally.

A challenge for any form of compaction is that the resultirgpplation may not cover the complete problem
space any longer. The determination of uncovered subsphoesver, is a computationally intensive problem.
Our compaction mechanism avoids this problem by switchimg@mpaction onset to @osest classifier matching
(CCM) mechanism, in which a fixed number of closest classifiaatch. During compaction, the GA does not
apply mutation or crossover any longer, as suggested inowdsoriginal condensation approach [1]. Additionally,

a greedy algorithm may be applied on compaction onset, wdetétes redundant, inaccurate, overlapping classifiers.

A. Closest Classifier Matching

Most classifier systems to date have experimented only wiB Ipopulations in which each classifier matches

in a restricted subspace of the search space that is detnnnthe classifier condition. Booker [42] defined a
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Fig. 7. Learning progress improves further when RLS is a&gptb optimize the linear prediction of classifiers in allehitest functions. The
usage of a forget factok = .99 can abolish the bias due the chosen initial weight vectdialization (left-hand side). However, larger initial
values in the diagonal of matri¥” (,.;s = 1000) abolish the bias as well and enable even more accurate peamstimations. Hereby, the
runs with A = 1 (right-hand side) yield the most stable performance.
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matching mechanism where a classifier matched a binary stgng even when some bits did not actually match.
Fuzzy classifier systems have been investigated [43], wdiassifiers match to self-defined degrees. However, hone
of these approaches set the classifiers in relation to edr, dhat is, there was no competition during matching
but matching was determined individually for each classifielependent of other classifiers in the population.

Later, Booker [44] designed a matching mechanism that goedaa minimum number of matching classifiers.
If the number of matching classifiers did not reach that numnbeditional closest classifiers matched. Our CCM
approach takes a similar road, matching tlesest©,, (micro-) classifiers. In this way, it is guaranteed that
O, classifiers match the current input, so that the match setisialso©®,,. Closest is defined in the condition
structures of a classifiers, that is, by the activity deteation in each classifier, defined in equations (5) and (8)
for axis-parallel hyperellipsoids and general hypersbigs, respectively.

Thus, given current input vectafr;, first the activity of each classifier is determined. Nexg @, classifiers
with the highest activity are added to the current matchNete that this can be done in linear time on average so
that only a constant amount of additional computation tisy@eéeded on average for this step (since determining
classifier activity also takes linear time). The conseqeda@ mosaic-like matching of classifiers with overlapping
tiles, which are determined by the distribution of classifiever the problem space as well as the distance measures

of the classifiers.

B. Greedy Compaction Algorithm

Several previous compaction approaches have used hesitistcompact the population quickly and effectively.
However, all of these approaches had to take special careeiem uncovered input regions [24], [25]. Our
algorithm can ignore this problem due to the CCM approachaamdconsequently act more greedily.

The greedy algorithm works as follows:

Al gorithm Conpact XCSF:

1 Iteratively consider all experienced classifiers c (exp>0sp) in [P
prioritized on the mninimumerror

2 Formmatch sets [M] containing all classifiers that nmatch the center of

3 Set nunerosity of ¢ to |[M]| and delete all other classifiers in [M]

The motivation of this compaction algorithm is to compa& population while maintaining the general classifier
distribution over the problem space. The algorithm iterdyi considers the next experienced, least error classifier
cl in the population. Next, a match sgt/] is formed that contains all classifiers that match the ceotehe
selected classifier, consequently considering all cemtertapping classifiers. All matching classifiers are dalet
and their numerosity is transferred to the initially sedekctlassifiercl, since the initially selected classifier is the
experienced, least error classifier in that subspace. Td@itim assures that hard problem subspaces, those with

strong curvature in the function, remain covered by moresifiers than regions that can be approximated easily.
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The runtime of the algorithm is quadratic in population s&ace the selection of the next least error classifier in
the population and the respective match set formationsttaies linear in population size. Seeing that the number
of learning iterations as well as population size grow potyially in problem complexity [45], [9], this complexity
is not a bottleneck in the learning process, but can ratheregéected, compared to learning time.

Since the shape of the subspace a classifier matches in chdngéo the application of CCM upon compaction,
XCSF continues adjusting its parameter values to accourthéaltered subspace that each classifier now matches
in. XCSF also continues to apply the GA to balance space ageetHowever, after compaction, neither mutation
nor crossover are applied any longer, effectively appltimg condensation mechanism of Wilson’s original work
[1], but with CCM ensuring complete problem space coverage.

In sum, rule set compaction is applied after a certain amotifgarning steps. First, the compaction algorithm
may be applied. From then on, CCM is used with a match set $igg,p (set to©,; = 20 throughout) and XCSF

condensation applies, executing the GA without mutatioth emossover operations.

C. Compaction Performance

We tested the compaction mechanism on multiple real-vdlugetions. The siz® ;, was set to twenty throughout
the experiments. In the implementation, we do not enfégeexactly but have enough individual classifiers match,
so that at leas®,; (micro-) classifiers match. For example @f,; = 20 and the closest classifier has numerosity
16, and the second closest classifier has numeradsityooth complete classifiers will participate in the match set

We will now show performance of the compaction algorithmfie three functions considered throughout this
paper. The subsequent section further evaluates the coimpatgorithm in more challenging functions as well as
in higher dimensions.

Figure 8 shows the performance of the compaction mechamistimei three test functions. After iteratiai®0k
the compaction mechanism applies changing the matchingedrwe to CCM and applying condensation (no more
mutation nor crossover during the GA application). Withthe application of the greedy compaction algorithm
(left-hand side graphs of Figure 8), the number of distifatsifiers in the population strongly and continuously
decreases while accuracy is affected marginally. In facfunction fo accuracy even increases indicating that the
compaction mechanism eliminates inaccurate classifierwialg for an even more accurate function approximation.
Moreover, it can be seen that a forget fackor .99 is slightly advantageous compared to infinite memovry=(1)
in the classifier predictions. When changing to CCM, the pabs a classifier matches changes and becomes
dynamically dependent on the distribution of surrounditagsifiers and their numerosity values. Thus, the optimal
linear approximation for the altered subspace is likely hargye, dependent on the function values in the altered
subspace. Thus, an adaptation rate to this change can betagkaus. Alternatively, also the covariance malfix
may be adjusted by increasing the diagonal entries (ii@&édlby d,;5), which is however not further investigated

in this paper.
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Fig. 8. The compaction mechanism with closest classifiechiragg and condensation decreases the number of macrdielesgihile marginally
affecting accuracy (left-hand side). Hereby, the forgetda = .99 shows to respond to the changing approximation subspac¢odtiesest
classifier matching faster than without forgetting, esplécin functions f2 and f3. The application of the greedy algorithm upon the applicati
of compaction decreases the number of macro classifiers raeea strongly, still hardly affecting accuracy (right-liaside).
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With the application of the greedy compaction algorithne tiumber of distinct classifiers shrinks even more
strongly (right-hand side graphs of Figure 8). Accuracygldly drops since the matching algorithm and classifier
distribution is changed, which is slightly compensated tludunction value estimation adjustments. With the
greedy compaction algorithm, the forget factorof the RLS algorithm does not show any additional influence
on performance accuracy in the three functions. While tmereralues were0039 + .0002, .0018 4+ .0003, and
.0026 + .0004 for the three functions, respectively, before compacti@s \applied (settingh = 1), they were at
.0056 +.0002, .0022 + .0004, and.0030 4 .0006, after 200k further iterations. Thus, accuracy was slightly affected.
On the other hand, population sizes decreased highly signifiy: Before compaction, the sizes of distinct (macro-)
classifiers wer@344 + 52, 2011 + 80, and2106 + 46, respectively, and settled 861 + 7, 71 £+ 10, and101 £ 11
after compaction—a drop of more th@n% on average. It is also apparent that the higher regularifyrictions
fo and f3 is detected appropriately, resulting in more compact fienctepresentations than in the casefof in
which less regularity can be exploited. The results confinm robustness of the greedy compaction algorithm as

well as the CCM mechanism maintaining accurate approxanativhile strongly decreasing population sizes.

V. PERFORMANCEEVALUATIONS

We now evaluate XCSF’s performance on higher dimensionattian problems as well as in other function
domains. In each case, we analyze achieved accuracy angdipalation compaction. Finally, we compare XCSF's
performance with statistics-based approximation apgrea28], [29], compared to which XCSF shows competitive
performance, as well as with the self-organizing neuralvogt approach Neural GAS [26], [27], which XCSF
outperforms easily. We also evaluate XCSF's generalimat@pabilities by restricting the input space to a subset

of sampled function values.

A. Performance on 3D Functions

Before moving on to other functions, we test XCSFfanf2, andf5 in the three dimensional setting. Performance
is shown in Figure 9.

In the case off;, the function becomes significantly more difficult. As pidd, the checkerboard quality of
f1 discussed above enforces a grid-like partitioning of thercde space for maximally suitable approximations.
In conjunction with the piecewise linear approximation iack classifier, the function consequently becomes
exponentially more difficult with each additional dimensid hus, regardless with which setting, XCSF does not
reach an accuracy of1 anymore and no convergence is observable in the population.

Compaction affects performance slightly if no proper cageace was reached in all three functions. Especially
when no explicit rotations are enabled but the full transfation matrix is evolved (left-hand side graphs of
Figure 9), accuracy drops upon the application of the cotmaenechanism. However, with RLS and rotating

hyperellipsoids this effect is marginalized. In functign for example, compaction decreases population size from
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Fig. 9. The checkerboard quality ¢gfi prevents XCSF from reaching .l error level in three dimensions. In functiorfs and f3, though,
XCSF continues to learn accurately. As observed in the tweedsional case, RLS yields accuracy improvements in adetffiunctions. The
explicit rotation of hyperellipsoids (instead of evalmatithe full covariance matrix) is advantageous in functionghich rotations are necessary

(f2 and f3). Compaction strongly decreases population size whiltopaance is only slightly affected, especially when thection was learned
effectively.
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2357+ 70 to 131+ 12 (measuring at learning st&90k and500k), affecting accuracy hardly at allo0392 +.00060
vs. .00396 + .00053). This confirms that the evolutionary process of XCSF is ablalentify the oblique function
property and orient the evolving hyperellipsoids accogtin

To further investigate the power of the approach, we test€&KX with rotating hyperellipsoids in several other

three dimensional functions:

falz,y,2z) = sin8r(x+y+ 2)),

fs(w,y,2) = sin(2m(z +y+2)) +sin(4n(z +y + 2)) +sin(67(z +y + 2)) +sin(87(x +y + 2)),
fe(x,y,2) = [sin2m(z +y+ 2))| + |cos(2m(z +y + 2))|,

fr(x,y,2) = sin(2r(x +y + sin(7z)))

The first two functions make approximation even more diffithién in f3 due to stronger curvature. Functiofis
and f; are non-continuously differentiable and continuouslyndiag in their obliqueness, respectively.

Performance on these four functions is shown in Figure 10SKGhows the typical learning pattern fi,
which is more difficult thanfs, but generally of the same structural requirements (dlassishould be distributed
approximately double as dense for equal accuracy). Ped#focen improvement is more noisy and takes longer
on average compared to performance fan After compaction, performance ofy maintains an error level of
.0040+.0005 with only 131+12 macro classifiers. On the other hand fin performance levels out @054 +.0008
with a macro classifier size &6 + 29, which clearly indicates the doubled complexity in the fiiorw.

Functionfs is a superimposed sine function. Performance on this fangs similar tof,. Although the function
has higher values in its second derivative, it allows ihfater learning due to the lower absolute value difference
Upon convergence, though, the error stays higher than infthreins (0065 4+ .0013 with size 242 + 22). In the
non-differentiable casgs, XCSF is still able to generalize maintaining high accuré®&p41 + .0006 with size
162 + 39). In f7, the function does not lie perfectly obliquely in the prahlespace any-longer but obliqueness
changes gradually. Consequently, the hyperellipsoidehtations need to be locally optimized and the overlaps
are not as clear-cut as before. Nonetheless, performaitficeeathes the01 level with an error 0f.0071 + .0016
and a number of macro classifiers 500 + 119 before compaction, and errdi085 +.0011 and number07 + 20
afterward. Compaction increases the approximation eriastnm function fs, which appears to be due to the non-
differentiability of the function at several locations. & bompaction algorithm overgeneralizes at these points ove

or under-estimating the slope of the function.

B. Higher Dimensions

After the evaluation of the general capabilities of XCSFwibmpaction, we now test the scalability of XCSF

and the associated rotation mutation in higher dimensions.
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Fig. 10. Performance on other three dimensional functiangiens the robustness of XCSF learning and compaction nmésina.

To evaluate the suitability of explicit rotations via mudatt, we tested XCSF orf; and f5 in four dimensions.
Figure 11 shows that XCSF without explicitly rotating hypipsoids does not reach the accuracy level that XCSF
with rotation reaches. Also the number of distinct macrasiféers in the population stays much higher, indicating a
lower amount of convergence and higher diversity in the fetpn. After compaction, the difference becomes even
more pronounced: In functiof, XCSF with rotation hardly looses accuracy(46+.0015 before vs.0051+.0010
after compaction) while eliminating more th&% of its classifiers 504 + 83 vs. 164 + 13). Without rotation,
XCSF exhibits higher variance and a loss of accuracy afterpaztion (0272 + .0169 vs. .0515 £ .0207). This
confirms that the more direct mutation via rotations faaifs population convergence and the development of more
suitable classifier hyperellipsoid orientations.

With a successful approximation of a four dimensional fiorcin hand, we experimented with the scalability

of our approach. Increasing the dimensions makes the proptegressively harder for XCSF. First, to cover the
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XCSF, HyperEllipsoid with RLS in fy(X1,...,X4): SIN(2 TT (X +...+X4))

XCSF, HyperEllipsoid with RLS in f3(Xy,...,X4): Sin(4 TT (X +...+X4))
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Fig. 11. Also in four dimensions, explicit rotation of hyp#ipsoids via mutation facilitates learning in functiofisand fs. If the hyperellipsoids
are located suitably, compaction does not disrupt but geegran accurate, highly compact final solution.

whole problem space, the number of necessary classifiersaises exponentially with the dimensions given the
average size covered in each dimension in a classifier renw@instant. If the coverage of the initial classifiers
(generated by covering) is increased, though, then impbpi@blem structures may not be detected due to the lack
of fithess pressure [5], [9], [37]. Thus, in order to be ablestdve problems in increasingly higher dimensional
spaces, a good balance between full problem space covemdgelassifier specificity needs to be found.

Figure 12 shows performance curves in five, six, and seveemsion versions of functiorfis. Population sizes
were set td 2.8k, 25.6k, and51.2k, respectively. To decrease the variability of the classfie the initial population,
in the six (seven) dimensional runs during covering clamsifitervals were initialized with a minimum value of
4 (.5), that is, oy = 6.25 = 472 (04 = 4 = .572), and a maximum value ab (.6), respectively. The necessary
increase in maximum population size for the higher dimamsimdicates the difficulty of the algorithm to detect
interesting structures in the function while maintainingl problem space coverage. In the seven dimensional case,
a classifier with an initial average spread &% in each dimension only covers” of the area, suggesting the
need for107 classifiers of that size to cover the whole problem spaceotmif.. XCSF manages to receive a signal
with a much smaller population size and consequently lactgssifiers.

To ensure the coverage of a subspace Wik probability (see thecovering bound5]), given a population
size of 51.2k, each classifier should cover at least a subspace oflsizd1 — .99)/51:200 — 8,99 x 1075, In
seven dimensions this corresponds to a squar€6f units in each dimension. The chosen maximum stretch of
oy = .62 = 2.78 corresponds to a distance ¢f—21n0,,/l/o;; = \/—21n.7/7/2.78 = .1149 in each dimension.
Thus, the initialization slightly overspecializes. Theesjalized initialization enables the detection of the qbd
orientation of the approximated function, though. The highiance in these higher dimensional cases shows the

difficulty (cf. Figure 12): the detection and growth of thderant problem structure starts to be extended in time
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Fig. 12. XCSF can solve functiorfs in up to seven dimensions. Covering and reproductive oppityt challenges become increasingly
pronounced due to the curse of dimensionality. Nonethel&SF with compaction still generates a highly compact fiamcapproximation
representation.

(indicated by the step-like convergence averaged overtyy@moblems): Each experiment begins to converge at a
different point in time, resulting in the high variance dwgiconvergence. Nonetheless, XCSF is able to approximate
even the seven dimensional version of the oblique funcfigrighly accurately, reaching an accuracy level of
.0051 4-.00204 with only 312+ 42 distinct classifiers after compactio®((53 +.0020 with 10898 + 1414 classifiers
before compaction).

C. Generalization Capabilities

Besides larger dimensions and other functions, it is iisterg to evaluate the generalization capabilities of XCSF
with and without compaction. Thus, we tested XCSF in fundify, f», and f3 on a restricted training set 660
uniformly randomly selected data points of the functionke Training set is continuously sampled in epochs of

500 learning iterations without replacement, as has beae étsewhere [28]. Performance, however, is tested on
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a4l x 41 grid distributed uniformly over the function domain. Toall comparisons with results of other systems

available in the literature [28], performance now is meadry the normalized mean square error (h(MSE), that is,
the MSE divided by the sample variance of the81 test function values. Since restricted sampling emphasize
the importance of generalization, the fithess pressure waredsed by setting the tournament size proportion to
T=".1.

Figure 13 shows that XCSF can accurately approximate treetfunctions with an nMSE 0f)009 + .0004,
.00015 + .00013, and .0027 + .0034, respectively, before compaction. This confirms the adeuggneralization
capabilities of XCSF. It can be seen that the application &drget rate of\ = .99 does not improve accuracy
but rather causes performance instabilities. These itlisiedalso apply during compaction. Compaction in gehera
causes a slight accuracy decrease in this case, most likelyodunder-sampled problem areas. After 100k iterations
with CCM and condensation performance nMSE with= 1 and application of the greedy compaction algorithm
(performance without compaction algorithm in brackets} w24 +.0022 (.0015 4+ .0028), .00124.0024 (.0003 +
.0009), and.0113 £+ .0126 (.0024 £ .0025) in the three functions, respectively. Nonetheless, paijnn size again
dropped in the runs with = 1 and greedy compaction algorithm (without compaction athor): from 1599 + 68
to 135+ 5 (1586 & 76 to 323 +8), from 1524 + 75 to 68 +9 (1576 & 75 to 286 +9), and from1401 £ 82 to 86 £ 11
(1418 + 76 to 301 + 10) macro classifiers in the three functions, respectivelyusliwithout the greedy compaction
algorithm, performance accuracy is only slightly affectelile population size decreases by approximagtly.

With the compaction algorithm, performance degrades g&pbut population size is decreased by o¥&.

D. Comparison with Other Approaches

As a final evaluation criterion, we chose to compare the perémce of XCSF with several other non-evolutionary
learning approaches.

1) Constructive Incremental Learning Approachhe constructive incremental learning approach learnfgico
similar to the one evolved by XCSF using heuristics-basatissics [28]. The resulting greedy learning algorithm

was tested on the following function:
fs(z,y) = max {6710302, 67502/2, 1.25675(w2+y2)} + N(0,.01), (12)

where the last term denotes Gaussian noise with a standaiaide of .01. [28] reports performance values in
the setting with a restricted training set &0 points, drawn uniformly randomly from+1, 1] in both dimensions
and sampled without replacement over many epochs. Penfmenia tested in a1 x 41 grid, which is distributed
uniformly over the function domain. A normalized mean s@aaerror of.02 is reported. Besides the required
approximation due to the restricted training set, the nosficient in the function requires sufficient noise tolera
of the algorithm.

We tested XCSF performance on functiinwith unrestricted problem sampling and with a restrictetdo$&00

points, as in [28]. Again, the tournament size proportiors wat tor = .1 in the restricted set runs. Performance

25



XCSF, Rot. HyperEllipsoid with RLS, 1=.1, A=.99, TrainSet=500, in f;: sin(2 Ttx)+sin(2 ™GSF, Rot. HyperEllipsoid with RLS, 1=.1, TrainSet=500, in f: sin(2 Tt x)+sin(2 1ty)

1 1
NO'COmpaCtIOn Alg.: nMSE z| ‘ ‘No Compact‘ion Alg.: nMéE =]
macro cl. ——m-— macro cl. ——m-—
Wlth Compactlon Alg.: nMSE o= With Compaction Alg.: nMSE ---&---
i macro cl. ----e-- macro cl. ----e--
3 01k v 3 01f
2 ¥ ! Te] =T
g o g A0y
3 i 1 s .
I : {
8 Ba! 7 ! g b
E o0t E 0 ‘ E 00Lpg
% EE@E; ! % EiiL
= B i = @i REEEEES
= % : = oall 1
i i frrin ] SogDti | 111
@E&ﬁ_‘;l}ﬂ“ i = Sem ety T4 &b
%004, E’ rhEa E‘EEBEEEE%BEEBE EFjEIB it %egg@@gggammméﬁéﬁu L e
S00g0 Sgg 2z O e s i
0.001 ¢ eé)eee@e)@ @@m@ E 0.001 ¢
Il Il Il Il Il Il
0 100 200 300 400 500 0 100 200 300 400 500
number of learning steps (1000s) number of learning steps (1000s)

XCSF, Rot. HyperEllipsoid with RLS, 1=.1, A=.99, TrainSet=500 in f,: sin(2 1t (x+y)) XCSF, Rot. HyperEllipsoid with RLS, 1=.1, TrainSet=500 in f,: sin(2 1t (x+y))

1 1
‘ No Compactibn Alg.: nMéE =] ‘ No Compactibn Alg.: nMéE z|
macro cl. ——m-— macro cl. ——m-—
With Compaction Alg.: NMSE ---&-- With Compaction Alg.: nMSE ---&---
macro cl. ----e-- macro cl. ----e--
. 0.1 F E . 0.1 [
g - . g 3
g v } g
= @ = -
o 001 {1 S 0.01 | e
g I g :
£ o £
(Llfl; x| % RERRRERE
Z 0001 e S ooof ro00000000p
I ey !
@QS ‘”“%?E‘E"Bﬁlmggﬁﬁﬂwﬂ o
OO s s | B | 8 flo=censs
eeee@e@@@@e@@ ke
0.0001 L L L L 0.0001 L L L L
0 100 200 300 400 500 0 100 200 300 400 500
number of learning steps (1000s) number of learning steps (1000s)

XCSF, Rot. HyperEllipsoid with RLS, 1=.1, A=.99, TrainSet=500 in f3: sin(4 1 (x+y)) XCSF, Rot. HyperEllipsoid with RLS, 1=.1, TrainSet=500 in f5: sin(4 1t (x+y))

1 1
‘ ‘No Compactlon Alg.: nMSE 2| ‘ ‘No Compact‘ion Alg.: nMéE 2|
rocl. —-m-— 1 macro cl. —-m-—
W|th Con‘gpacnon Alg. BQEMSE — 0 é With Compaction Alg.: N(MSE ---&---
i macro cl. ----e--- : macro cl. --e---
< P i : < A
© i it I i © L&
0 i i h 0 01 o
S L . S P
3 i i S | &1 e
g : ' o 7 s S
c‘B’ i ) c‘B’ 971 ., i | *-H IRREH
£ L “7 : £ 'Y - @ N
ui 1o gl Lt w 001 F PocotBeset
2 o el i g
e ! F =)
Z =55 Bmamm%mgaﬁéég %@E bt g; Z
a2l e e e
0001 | | | | 0001 | | | |
0 100 200 300 400 500 0 100 200 300 400 500
number of learning steps (1000s) number of learning steps (1000s)

Fig. 13. Performance offi, f2, and f3 tested on restricted training sets of 500 uniformly randosaimpled points confirms the generalization
capabilities of XCSF. A forget rate of = .99 is not beneficial for prediction accuracy stability (letiffd side) but can even result in performance
degradation during compaction. Performance is more staftfean infinite memory settingX(= 1, right-hand side), also during compaction.

The application of the greedy compaction algorithm addiloto CCM and condensation yields a more compact classifiebst also some
additional loss in performance accuracy.
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Fig. 14. The Schaal-Atkeson function is an interesting lehgke for XCSF. When the whole problem space is sampled nnijorandomly,
XCSF strongly outperforms the reported performance in.[28je compaction algorithm appears to delete some partiedful classifiers,
seeing that accuracy slightly decreases (right-hand .side)

is reported in Figure 14, plotting the nMSE as done in [28].aWlthe whole problem space is sampled uniformly
during learning, high accuracy is reached with an nMSB.82 * 10~ 4+ .70 * 10~°, slightly degrading t®5.96 *
107°+£1.40%107° (52.63 10~ °4+96.84 + 10~°) after the application of the compaction mechanism withwuith)
greedy compaction algorithm. This indicates that compactiauses slightly unsuitable generalization patterns on
the approximation surface. The results, nonetheless,roottiat XCSF is able to reliably approximate the function
despite the additional noise.

XCSF reaches a performance level .0698 + .0104 (1448 £ 79 macro classifiers) before an@160 4+ .0108
(310 £ 7) after 100k iterations with compaction mechanism but withgreedy algorithm, when the set of sampled
points is restricted t&00 continuously sampled data points (Figure 14 left-hand,sidainSet=500). When the
compaction algorithm was applied as well, accuracy of perémce changed fron®100 + .0084 (1463 + 74) to
.0384 4+ .0419 (105 + 7) (Figure 14 right-hand side, TrainSet=500). Due to slighthsuitable generalizations, the
additional decrease in the number of distinct classifiedsttea more severe error increase. Thus, in restrictedly
sampled domains, the compaction algorithm can cause absiigeneralizations. Nonetheless, using only CCM
plus condensation, performance can be nearly maintainkile Wecreasing the number of distinct classifiers still
by approximately80%.

2) Incremental Linear Model Tree Algorithnfunction fg was also used in [29] with stronger Gaussian noise
N(0,.1) sampling from the complete problem space uniformly rangom@porting normalized root mean square
errors (hARMSE). Performance of XCSF is shown in Figure 15e&ampling the full problem, performance reaches
a level of.00140 + .00013nMSE, which corresponds t9375nRMSE. After condensation, approximation quality
remains stable at0141 +.00028nMSE (= .0376nRMSE) without the application of the compaction algoritand
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Fig. 15. With the higher noise level of = .1, XCSF is able to approximate Functigfy yielding a higher accuracy than other learning
approaches.

slightly decreases td0206 + .00034nMSE (= .0453nRMSE) with compaction algorithm. Population size again
dropped significantly in both casef)59 + 58 classifiers boil down td82 4+ 8 without and156 +6 with compaction
algorithm.

Potts [29] reports a value 065nRMSE for his incremental learning linear model tree aldponi with pruning
(IMTI). He reports worse performances for Schaal and Atk&sincremental learning approacldgnRMSE) as
well as for the ten nearest neighbor approach, which reaaHesel of only.08nRMSE. The number of distinct
models used aré8 + 6 for IMTI and 92 + 3 for Schaal and Atkeson’s incremental learning approach [P8us,
XCSF is able to approximate the function more accuratelyirawy only a slightly higher number of models in its
final population.

3) Neural GAS: As a final comparison, we chose the Neural GAS algorithm, witdan also be applied to
function approximation [26], [27]. Neural GAS is similar ®CSF in that it distributes its neurons based on
occurrence frequency and approximates function valueslljodHowever, the distance measure is not altered in
the Neural GAS algorithm and the distribution is not dependm the accuracy of the resulting function value
approximation. Thus, Neural GAS performance can be coraida base line performance, which should be beaten
by any algorithm that distributes its local approximatigmediction error dependently, given such an additional

distribution bias is useful in the considered approxinmagooblem.
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Fig. 16. XCSF clearly outperforms Neural GAS in functigg in the two and more pronouncedly in the three dimensionat.cas

Figure 16 compares performance of XCSF and Neural GAS ortitm¢; in two and three dimensiorisin the
two dimensional case, Neural GAS reaches an accuracy [éveDd9 + .00032 (.0075 + .00050) with a neural
population size 02000 when the (ten) closest neuron(s) are used for the gene@itibie prediction and during RLS
update. XCSF reaches an accuracy leveD6280 + .00055 with 1948 + 78 different classifiers afte200k learning
iterations. After compaction, XCSF only requiré3l 4 11 classifiers to maintain an accuracy.00315 £ .00058.
This again confirms that XCSF does not blindly evolve classifibut distributes them suitably over the problem
space.

The performance differences are even more pronounced iftbe dimensional case. The Neural GAS algorithm
reaches an error level 0#304 +.00231 (.0396 + .00212) after 400k learning steps with a neural population size of
10,000 neurons and using the (ten) closest rule(s) for predictemegation and RLS update. XCSF, on the other
hand, reaches an error level ®0340 + .00157 with a population size 02363 + 55 before and it maintains an
error level of.00396 + .00053 with a population size ot31 + 12 after compaction.

The results confirm that XCSF with rotating hyperellipsoatsl local RLS approximation yields competitive
performance in comparison to other state-of-the-art legrralgorithms. In the case of uniform sampling as
well as in the case of restricted sampling, XCSF reachesracguevels of the best incremental statistics-based
learning algorithms published on the topic. In comparisorah unsupervised clustering algorithm with added

linear approximation (Neural GAS), XCSF exhibits supenmrformance in accuracy and compactness of the

Sparameters of Neural GAS were seteo= .5, e; = .01, A; = 10, A\; = .5. Rank-based center adjustment was applied until $t&)k
(200k in 3D), until which values)\ and ¢ exponentially decreased according to [26]. RLS with= .99 and 6z, s = 1000 was applied
(A = 1 showed slightly worse results due to the continuous cemtaptations in Neural GAS). Additionally, to ensure that medly accurate
approximations are generated by RLS, mafrixwas reset afted 50k steps by multiplying the diagonal elements Wfwith §rr 5. Twenty
independent runs were conducted.
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representation. XCSF solves the considered problems wtithsing any sophisticated statistics except the one
directly derived out of its error measures. Space pariitigris not changed heuristically, but is evolved by the
evolutionary component of XCSF. Thus, XCSF is a flexible ngag method in which the evolutionary component
can be easily applied to a multitude of other problems indgdfor example, reinforcement learning problems in

which reward propagation is required [12], [1].

V1. SUMMARY AND CONCLUSIONS

This paper investigated XCS’s function approximation d¢aliges. We showed that XCS’s performance could
be improved in three ways. (1) Faster and more accuraterliygaroximation with efficient RLS stabilized and
improved performance. (2) The representation of the dlassiondition improved function approximation, in this
case preventing unsuitable classifier overlaps. (3) Theatges in the evolutionary process were optimized to enable
faster learning by a more directed evolutionary processum, XCS performance can be improved by optimizing
gradient-based approximation, classifier representatiod the evolutionary process.

Moreover, we introduced a new compaction mechanism to XC8E.mechanism is based atosest classifier
matching(CCM) plus condensation (no mutation nor crossover in theapplication). In CCM, a fixed number of
closest classifiers match, where closest is defined by ti@ndis measure of each classifier itself. CCM prevents the
generation of holes in the function approximation surfagdrd) compaction. Meanwhile, condensation causes the
propagation of well-shaped accurate classifiers and tregidelof overlapping inaccurate classifiers. The mechanism
was able to decrease population sizes by often more&b#nhardly affecting performance accuracy. An additional
greedy compaction algorithm, which iteratively deletessslfiers that overlap with low-error classifiers, was shown
to be able to compact the population by often more tha% on average—albeit with a slight accuracy decrease
in non-differentiable or highly irregular functions.

Results showed that the improvements enabled XCSF to sohaién approximation problems of up to seven
dimensions with highly compact final representations. Moeg, XCSF was shown to be noise robust and able to
generalize well to unseen problem instances. In generataé highlighted that XCSF is a learning mechanism
that clusters the problem space to ensure maximally aeccwapproximations in the experienced subspaces. It
outperforms general clustering algorithms, such as Ne@ds® [26], [27], in function approximation tasks, and
it approximates and partially outperforms more directéekative function approximation mechanisms published
elsewhere [29], [28].

In conclusion, XCSF was shown to be a flexible, easily addptiarning system that is applicable to many
types of predictive tasks, and particularly tasks that cammproximated with local, partially-overlapping gradien
based estimates. Future work will evaluate the XCSF enimeits in datamining tasks as well as in reinforcement
learning problems. Moreover, the mechanism is planned tintegrated into a cognitive systems architecture, in

which the predictions manipulate neural gates in a rectimenral network structure.
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