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Abstract. What does it mean for a system to be goal oriented? In this
paper we investigate how goals are represented and how they activate ac-
tions. We review the main philosophical and psychological assumptions
about the ideomotor principle and we compare it with the TOTE model
in cybernetics. We also present three computational architectures that
implement goal orientedness, discussing their main peculiarities and lim-
itations with respect to the ideomotor principle and TOTE.
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1 Introduction

Intelligence of complex organisms such as humans and other apes resides in the
capacity to solve a problem by working on internal representations of problems,
that is by acting upon “images” or “mental models” corresponding to word states
on the basis of simulated actions (“reasoning”). Recently, many converging ev-
idences in psychology and neurobiology indicate a crucial role of anticipatory
representations for many cognitive functionalities such as visual and motor con-
trol [13]. As suggested by the discovery of mirror neurons [34], representations
are often action-related and are thus grounded on the representations subserv-
ing the motor system. Barsalou [2] as well as Grush [11] try to provide unitary
accounts of these phenomena proposing perceptual symbol systems and an emu-
lation theory of cognition. Moreover, anticipatory functionalities are starting to
be explored from a conceptual point of view [6] as well as from a computational
point of view [7, 5, 41].

Several of these anticipatory mechanisms can be dated back in their origin
for decades if not centuries. The ideomotor principle (IMP), which was pro-
posed multiple times during the 19th century [12, 19], hypothesizes a bidirec-
tional action-effect linkage in which the desired (perceptual) effect triggers the
execution of the action that previously caused that effect. The test operate test
exit (TOTE) model of cybernetics [24] proposes goal-oriented action control.

The first aim of this paper is to provide a comprehensive introduction to both
of these concepts and to highlight their similarities, differences, and drawbacks
in explaining anticipatory goal-oriented behavior (sections 2-4).



The second goal of the paper is to analyze, at an abstract level, three com-
putational architectures which implement several features of IMP and TOTE in
distinct ways (Section 5). This analysis is intended to exemplify and clarify the
principles underlying the IMP and the TOTE, and to provide a starting point
for future research in the investigation of anticipatory goal-oriented behavioral
mechanisms. A final discussion concludes the paper with an outlook of the next,
most imminent challenges (Sec. 6).

2 The Ideomotor Principle

According to the IMP [14, 17, 19], action planning takes place in terms of an-
ticipated features of the intended goal. [10] underlines the role of anticipation in
action selection: a current response is selected on the basis of its own anticipated
sensory feedback. The Theory of Event Coding [18] proposes a common coding in
perception and action, suggesting that the motor system plays an important role
in perception, cognition and the representation of goals. The theory focuses on
learning action-effect relations which are used to reverse the linear stage theory
of human performance (from stimulus to response) afforded by the sensorimotor
view. Neurobiological evidence for common mechanisms in perception and ac-
tion are reported in [20, 33]. In this respect, Gallese [9] suggests that the goal is
represented as a goal-state, namely, as a successfully terminated action pattern.

In the ideomotor view, in a sense, causality, as present in the real world, is
reversed in the inner world. A mental representation of the intended effect of an
action is the cause of the action: here it is not the action that produces the effect,
but the effect that produces the action. [25, par. 21.5] describes an “automatic
mechanism” realizing this principle (see Fig 1): when the features of, say, an
apple are endogenously activated, an automatic mechanism is oriented toward
(seeing or grasping) apples teleonomically.

Fig. 1. The “automatic mechanism” in [25, par. 21.5].

The main constituents of the IMP The comparison of the presentations of the
IMP by these various authors allows identifying three main constituents of the
principle itself. These form the core of the principle and abstract over minor
details and different emphases stressed by the various authors. The three con-
stituents are now analyzed in detail (see Fig 1).



Fig. 2. A scheme that represents the main features of the IMP. Thin arrows repre-
sent information flows, whereas the bold arrow represents the direction of the internal
association between goal and action following the causality. See text for further expla-
nations.

– Perceptual-like coding of goals. An important characteristic of the IMP is that
it has been developed within a vision of intelligence seen as closely related
to the sensorimotor cycle (for an example from the psychology literature see
[22], whereas for an example from embodied artificial intelligence see [11]).
As a consequence, the authors proposing the IMP usually stress the fact
that the system’s internal representations of goals are similar, or the same,
as the internal representations activated by perception. This feature of the
principle has also an important “corollary”: the source of goals is usually
assumed to be experience, that is, goals tend to correspond to previously
perceived (abstracted) states.

– Learning of action-effect relations. Another important constituent of the
principle is that experience allows the system to create associations between
the execution of actions (e.g., due to exploration, “motor babbling”, etc.) and
the perceived consequences resulting from it. This requires a learning process
that is based on the co-occurrence of actions and their effects observed in
the environment [17]).

– Goals are used to select actions. Another core constituent of the principle
is the fact that the system exploits the learned association between actions
and the resulting perceived states of the world to select actions. According
to [10, pag. 93]: For the ideo-motor mechanism, a fundamentally different
state of affairs is proposed in which a current response is selected on the
basis of its own anticipated sensory feedback. The idea is that the activation
of the representation of a previously experienced state allows the system to
select the action that led to it. When this process occurs, the representation
of the state assumes the function of goal both because it has an anticipatory
nature with respect to the states that the environment will assume in the
future, and because it guides behavior so that the environment more likely
assumes such states.

It is important to note that the selection of actions with this process requires
an “inversion” of the direction of the previously learned action-effect association,
from “actions→ resulting states” to “resulting states→ actions”. This inversion



is particularly important because it implies that the system passes from the
causal association that links the two elements, as resulting from experience, to
the teleonomic association between them, as needed to guide behavior. It is only
after the inversion that the effects can be used as goal states by the system.

3 TOTE and cybernetic principles

TOTE was introduced by [24] as the basic unit of behavior, as opposed to
the stimulus-response principle. TOTE was inspired by cybernetics [35], that
however focused on homeostatic control and not on goals. In a TOTE unit firstly
a goal is tested to see if it has been achieved; if not, an operation is executed until
the test on the goal’s achievement is successful. One of the examples of a TOTE
unit is a plan for hammering a nail; in this case, the test consists in verifying
if the nail’s head touches the surface and the operation consists in hitting the
nail. In this case, the representation used for the test is in sensory format, and
the operation is always the same, even if the TOTE cycle can involve many
steps. TOTE units can be composed and used hierarchically for achieving more
complex goals, also including any kind of representation for the test and any
kind of action. The TOTE also inspired many subsequent theories such as the
General Problem Solver (GPS) [26].

Fig. 3. A scheme that represents the main features of the TOTE. Words in Italics
represent the main processes composing the principle. Thin arrows represent informa-
tion flows. The double-headed arrow represents a process of comparison between the
desired and the actual state value. The dashed arrow represents the fact that an action
is selected and executed in the case the Test fails, but not how it is selected. The bold
arrow represents a switch in the sequence of processes implemented by the system. See
text for further explanations.

The main constituents of the TOTE The three main constituents of the TOTE
(see Fig. 3) are now analyzed in detail on the basis of the comparison of the
various positions of the authors just mentioned.



– Test. A first fundamental constituent of the principle is the internal repre-
sentation of the desired value(s) of the state of the environment. The repre-
sentation of this value is a key element of the Test sub-process composing
the principle. This is the sub-process through which the system repeatedly
checks if the current state of the environment matches the goal.

– Abstract goal. The desired state value of the system, that is the goal, can be
abstract. Indeed, the TOTE is underspecified with this respect, and the liter-
ature has used several different types of encodings for goals, from perceptive-
like encodings to more abstract symbolic ones. The principle can manage
this type of goals as the Test sub-process can be as complex as needed, from
simply matching two pattern to a more sophisticated process of logical com-
parison of several features. This (possibly) abstract nature of the definition
of goals has also an important implication on the origin of goals themselves,
which can derive from previous experience but also from other sources such
as other systems (communication or external setting) and “imagination”
processes.

– Multiple steps. An important aspect of the TOTE is the fact that it is nat-
urally suited to implement a course of action formed by multiple steps, as
suggested by the repetition of the Test sub-process in its acronym. Sensory
feedback is also used for chaining actions.

4 Comparison of IMP and TOTE

From the descriptions of IMP and TOTE of the previous sections, it should be
apparent that the frameworks referring to them specify rather general behavioral
and learning principles. Thus, designing an artificial adaptive learning system ac-
cording to the principles of the IMP and/or TOTE requires to integrate the two
frameworks with many implementation details. To compare the guidelines that
IMP and TOTE give for the implementation of an artificial adaptive learning
system, we now successively look at the different aspects that need to be inte-
grated. We start by considering goal selection and representation, then analyze
action selection and initialization, action execution, and context dependencies.
We close by discussing how learning may be integrated into the two principles.

4.1 Goal Origin and Selection

For goals or effects to trigger actions, goals need to be generated and selected
in the first place. However, neither one of the two approaches gives suggestions
on how such a goal selection process might be structured. Certainly, strong
links with motivational and emotional mechanisms might be called into play to
tackle this problem. For example undesired low values of variables controlled
homeostatically may trigger a goal that previously caused the variable to in-
crease in value (e.g., empty stomach leads to the search and consumption of
food). However, literature on IMP simply assumes that some events internal to
the system eventually trigger the (re-)activation of an internal representation of



action-consequences, that hence assume the function of a pursued goal, without
specifying the mechanisms that might lead to this. On the other side, the litera-
ture on TOTE tends to generically assume that goals derive from experience or
that they originate form outside the system (e.g., other intelligent systems, other
module, con-specifics, etc.). Thus, how a goal generation and selection system
could be implemented lies outside the scope of IMP and TOTE.

4.2 Goal Representation

Regardless of how goals are selected, goals may be represented in multiple ways.
In the IMP, goal representations are encoded perceptually. As a consequence
anything that can be perceived might give origin to a goal representation. These
goal representations can then trigger bidirectionally linked action codes or action
programs that previously led to the activated goal representation.

The IMP does not specify which perceptual goal representations may be
possible and how concrete or general they might be. However, two aspects are
usually emphasized: the role of experience in the formation of potential goals and
the perceptual basis of goal representations. With these restrictions in mind it
seems hard to generate some kinds of abstract goals within the IMP, in particular,
goals that are defined in terms of qualitative or quantitative comparisons, such
as: “find the biggest object in the scene”, or “find the farthest object”. In fact,
in these cases the goal cannot be a template or a prototype to be matched, but
requires complex processes such as “find an object, store it in memory, find a
second object, compare it with the previous one”. Thus, IMP can only apply, if
such abstracted, generalized, relational representations are generated from the
more basic, perceptual codes.

An interesting additional problem arises in the IMP in that it does not spec-
ify how the system may distinguish between actual current perceptual input and
current perceptual goal activation. The IMP postulates that the goal is repre-
sented in the same format as the percept, generated from the sensation of the
state corresponding to it. With this respect, authors usually claim that the phys-
ical machinery used to represent the goals and the one used at the higher levels
of perceptual processing are the same (e.g. [34]). This raises a problem: how does
the system distinguish between the activation of the representation correspond-
ing to a pursued goal and the activation of it caused by the perception of the
corresponding state? This information is clearly needed by the system to control
actions and essentially act in an anticipatory fashion rather than reactively.

TOTE on the other hand explicitly supposes “abstract” goal representations.
The system designer is left to define the possible levels of abstraction. This gives
TOTE much more freedom—goals could even be perceptually specified but also
other encodings may be used. Even when abstract encodings are used, TOTE
needs to be perceptually grounded since the “Test” of the mechanism needs to
compare goals with environmental states, which can only be derived from the
perceptual input. Thus, differently than IMP, TOTE stresses the importance of
abstract goal representations but its goals’ representations need ultimately to be
grounded in perceptual input as it needs to test if they have been achieved.



4.3 Action Selection and Initialization

Once a goal representation is invoked, the next question arises: how the cor-
responding motor program or action is selected and triggered. Both principles
remain silent on when the invocation of a goal actually triggers an action, as-
suming that this is always the case. However, in an actual cognitive system it can
be expected that the invocation of a goal representation may not always lead to
an actual action trigger, for example when the goal is currently not achievable
or too hard to achieve.

The IMP mostly stresses that the perceptual goal representations directly
trigger actions or motor programs that previously led to that goal. In contrast
to TOTE, though, the IMP does not specify how long this goal is pursued.
In particular, it does not specify what happens if the selected goal is already
achieved, nor it specifies how the system checks if the currently pursued goal has
been achieved. This information is important for the successive correct selection
of actions depending on the fact that the pursued goal has been achieved or not.
On the contrary, TOTE contemplates an explicit test, applied repeatedly, that
allows the system to check when the selected goal has been achieved.

On the other side, whereas IMP suggests the existence of bidirectional links
between goal representations and motor programs or actions that achieve them,
TOTE is silent on how specific actions are triggered on the basis of the activated
goal. For example, the origin of the knowledge needed to select the suitable ac-
tions in correspondence to goals is not specified. This is in line with the fact
that the literature on TOTE tends to overlook the role that learning and expe-
rience might have in goal directed behavior. Given this underspecification, the
models working on the basis of TOTE have adopted various solutions. The most
common solution (such as the General Problem Solver) assumes that the con-
trolled state is quantitative and continuous, and uses a mechanism that selects
and executes actions so as to diminish the difference between the current and
the desired values of the state itself. [30] makes explicit that there is a represen-
tation of a causal and instrumental link between the actions and the resulting
consequences.

4.4 Action Execution

Similar to the testing stage in action selection and triggering, TOTE performs
a test on the goal’s achievement also during action execution. The IMP remains
silent on how the testing process may be realized. TOTE is thus an explicit
closed loop framework, which by definition takes the initial state and feedback
into account. However, it does not specify if the system should only check for the
final goal or also for intermediate perceptual feedback, as suggested for example
in the emulation framework of Grush [11] or also in the closed-loop theory by
Adams [1]. Moreover, the authors of TOTE do not make any specific assumptions
about the specific mechanisms used for control, such as the overall architecture
of the system (e.g., hierarchical, modular, etc.). Also the IMP stays silent with
regard to the question on how the execution of the “selected” action is carried



out, in particular whether or not feedback is used for control. Finally, neither
framework concretizes possible distinctions between different types of perceptual
feedback such as proprioceptive versus exteroceptive feedback.

4.5 Context Dependence

Both approaches do not make any presuppositions on how goal selection and
action selection may be dependent on the current context. The IMP approach
considers merely the relation between the desired goal and the “action” to reach
it without taking into account that the required action almost always depends
on the given initial state of the system. Although modulations of action-effect
links are certainly imaginable dependent on currently available contextual infor-
mation, these are not specified in any form. Also TOTE is silent on this issue
as the link between activated goal and corresponding operation is not specified.
However, TOTE is context dependent at least in a sense: it explicitly takes the
current state into account in order to determine the action.

4.6 Learning

The IMP presupposes the learning of action-effect associations that have a bidi-
rectional nature, contrasting the view that the learning of “forward models” and
of “inverse models” are separated learning mechanisms. However, it is less clear
how such bidirectional learning is accomplished. If one assumes that the connec-
tions between actions and effects are mutually formed by a Hebb-like mechanism
(what fires together wires together), one has to face the problem that sensory
and motor parameters have to be represented in a way that allows to “wire”
different values from both sides with each other. This assumption leads thus to
the “common code” hypothesis [31], which is an additional claim. So, in short,
learning is to be taken for granted as the IMP does not provide an answer to
the question how learning should be organized or structured.

TOTE stays completely silent on how operator modes for specific goals might
be learned. Indeed, TOTE does not consider learning at all but rather expects
that the system designer creates appropriate operator modules for the goals that
may be selected.

In general, both systems remain very underspecified with respect to impor-
tant issues related to learning. For example, both frameworks do not address
important challenges such as learning generalizations over control programs or
facing the problem that goals may be achieved in multiple ways. This under-
specification with respect to learning remains one of the most crucial challenges
for the application of both frameworks.

4.7 Goal Orientedness

We distinguish between three kinds of teleonomic mechanisms:



1. stimulus determined, in which some results are reached thanks to learned
regularities, without any explicit representation;

2. goal determined, in which there is an explicit representation of the expected
effect which also triggers an action, via previously learned action-effect links3.

3. goal driven, in which there is an explicit representation of the goal (not only
the expectation) having the function to evaluate the current state and to
activate an action, given there is a mismatch.

We consider the IMP of the second kind and the TOTE of the third kind,
which is a sub-case of the second one. The main difference is that in the IMP
the goal is causally reached but not pursued as such. In other terms in the IMP
is functionally able to reach a state which is represented in an anticipatory way,
but the state is not treated as a goal that is something motivating and to be
realized.

On the contrary, the TOTE is goal driven: in fact, there is an explicit goal
representation which serves to evaluate the world (in particular, to be matched
against the current state). The test is both a trigger for action and a stopping
condition; more precisely, the mismatch (indicating the degree of non realization
of a goal) serves to select and trigger the rule whose expectation minimizes the
discrepancy. Differently from the IMP, the TOTE “knows” if/when a goal is
achieved. Another related point is that in the IMP desired results (motivating
the action) are not distinguished from expected results of actions, the latter
including the former.

The comparison has shown that both, IMP and TOTE, are rather under-
specified under many aspects. Whereas TOTE stresses the test-operate cycle,
the IMP stresses the linkage between action and contingently experienced effects
and the reversal thereof to realize goal-oriented action triggering. With this re-
gards, it seems possible that both principles might be combined into a unique
system whose goals are perceptually (but possibly very abstractly) represented,
and in which these perceptual goal representations trigger the associated action
commands. The triggered goal may then be continuously compared to the cur-
rent perceptual input enabling the recognition of current goal achievement. To
realize this, goal-related perceptual codes need to be distinguished from actual
perceptual codes, by, for example, a tag-based mechanism, a difference-based
representation, or a simple duplication of perceptual codes. As an example of
such a combination, Fig. 4 indicates how the TOTE can exploit action-effect
rules as in the IMP, still retaining the test component and using the mismatch
for selection and triggering. Of course, the functioning of many processes such as
matching, selection and triggering are left unspecified here, because they can be
realized in different ways. This is why in the next Section some computational
systems are presented that provide concrete examples of possible models that
can be obtained by merging different aspects drawn from both frameworks.

3 As discussed in Sec. 2, an effect can be used as a goal state because there is an
“inversion” of the direction of the previously learned action-effect association. For
this reason, this mechanism can be conceptually divided into two consecutive steps.



Fig. 4. An example of model integrating some functionalities of both IMP and TOTE.
Actions, as in the TOTE, are selected and triggered by the mismatch produced by the
test. The action-effect rules are the same used in the IMP.

5 Implementations of IMP and TOTE in Artificial
Systems

After having analyzed the IMP and TOTE at a theoretical level, this section
reviews and discusses some computational models, presented in detail elsewhere,
that on one side represent concrete implementations of some important features
of such frameworks, and on the other side offer concrete answers to the issues
left open by both frameworks.

5.1 Case Study I: An Architecture for Visual Search

A hierarchical architecture [29] inspired by the IMP and by the “automatic
mechanism” in [25] is tested in a Visual Search task [40]. The goal is to find the
red T in a picture containing also many distractors, i.e. green Ts and red Ls.
The system can not see all the picture at once, but has a movable spotlight with
three concentric spaces having good, mild and bad resolution.

Fig. 5. Left : the components of the simulation: the goal, the spotlight and the modules,
whose layers are numbered. Light and dark nodes represent more or less active modules.
Modules learn to predict the activity level of some modules in the lower layer, which
they receive in input (dotted lines). Right : a sample trajectory in the visual field,
starting from the center (red letters are dark Grey, green letters are light Grey).



The visual search task is performed by many feature-specific modules, such
as color-detectors and line-detectors, organized hierarchically (see the left part
of Fig 5). According to [8, p. 444] search is matching input descriptions against
an internal template of the information needed in current behavior : each module
consists in an input template and a behavior. Modules have a variable level of
activation; more active modules can act more often and, as we will see, influence
more the overall computation. Modules in layers 1 and 2 obtain an input from a
simulated fovea; the other ones have no access to the fovea, but use as input the
activation level of some modules in the immediately lower layer (dotted lines in
Fig 5). The architecture has five layers:

1. Full Points Detectors receive input from portions of the spotlight, e.g.
the left corner, and match full or empty points. Modules are more numerous
in the inner spotlight than in the central and outer spotlight.

2. Color Detectors monitor the activity of Full Points Detectors and recog-
nize if full points have the color they are specialized to find (red or green).

3. Line Detectors categorize sequences of points having the same color as
lines; they do not store positions and can only find sequences on-the-fly.

4. Letter Detectors categorize patterns of lines as Ls or Ts; they are special-
ized for letters having different orientations.

5. The Spotlight Mover is a single module; as explained later, it receives
asynchronous motor commands from all the other ones (e.g. go to the left)
and consequently moves the center of the spotlight.

In the learning phase, by interacting with a simulated environment, each
module learns action-expectation pairs. Modules learn the relations between their
actions and their successive perceptions (the activation level of some modules
in the lower layers), as in predictive coding [32]. In this way they also learn
which actions produce successful matching; for example, a line-detector learns
that by moving left, right, up or down the fovea its successive pattern matching
operation will be successful (i.e. it will find colored points, at least for some
steps), while by moving in diagonal its matching will fail; in this way the line-
detector implicitly learns the form of a line by learning how to “navigate” images
of lines. In a similar way, a T-detector learns how to find Ts by using as inputs
the line-detectors . There is also a second kind of learning: modules evolve links
toward the modules in the lower layer, whose activity they use as input and
can successfully predict; for example, T-detectors will link some line-detectors4.
These top-down, generative links are used for spreading activation across the
layers.

The simulation phase starts by setting a Goal module (e.g. find the red
T ) that spreads activation to the red-detector(s) and the T-detector(s). This
introduces a strong goal directed pressure; at the beginning of the task some
modules are more active than others and, thanks to the top-down links, activa-
tion propagates across the layers. During the search, each module in the layers
4 By learning different sets of action-prediction rules, modules can also specialize: for

example, there can be vertical lines detectors and horizontal lines detectors



2, 3, and 4 tries to move the spotlight where it anticipates that there is some-
thing relevant for its (successive) matching operation, by exploiting their learned
action-perception associations. For example, if a red-detector anticipates some-
thing red on the left, it tries to move the spotlight there; a green-detector does
the opposite (but with much less energy, since it does not receive any activation
from the Goal module). Line- and letter- detectors try to move the spotlight for
completing their “navigation patterns”. Modules which successfully match their
expectations (1) gain activation, and thus the possibility to act more often and
to spread more energy; and (2) send commands to the Spotlight Mover (such as
move left); the controller dynamically blends them and the spotlight moves, as
illustrated in the right part of Fig 5. In this way the fovea movements are sensi-
tive to both the goal pressures and the more contextually relevant modules, i.e.
those producing good expectations, reflecting attunement to actual inputs. The
simulation ends when the Goal module receives simultaneous success information
by the two modules it controls; this means that the Goal module has only two
functions: (1) to start the process by activating the features corresponding to
the goal state and (2) to stop the process when the goal is achieved. As reported
in [29], this model accounts for many evidences in the Visual Search literature,
such as sensitivity to the number of distractors and “pop-out” effects [40].

IMP and TOTE in play. According to the IMP, activity is preceded and
driven by an endogenous activation of the anticipated (and desired) goal state.
In this case, the goal “find the red T” can be reformulated as “center the fovea
in a position in which there is a red T”; and the process starts by pre-activating
the features of the desired state, i.e. the modules for searching the color red (red-
detector) and the letter T (T-detector); the “finding machine”, once activated,
can only search for an object having these features. The key element of the
model is the fact that modules embed action-expectation rules and are self-
fulfilling; when a module is endogenously activated, its effect becomes the goal
of the system. It is worth noting that this system does not use any map of
the environment, but only sensorimotor contingencies [28] and a close coupling
between perception and action.

This system can achieve only two kinds of goals: (1) goal states that were
experimented during learning, such as “find the red T”; and (2) goal states that
are a combination of features; for example, by combining a green-detector and
an L-detector, the system can find a green L even if it has never experimented
green Ls during learning, but only green Ts and red Ls. On the contrary, this
system cannot achieve other kinds of goals such as: (1) The red T on the left,
since locations are not encoded; (2) The biggest red T, since there is no memory
of past searches and different Ts can not be compared; (3) The farthest red T,
since temporal features are not encoded. These goals require a more sophisticated
procedure for testing and a more abstract encoding: two of the features of the
TOTE. The system uses a feature of TOTE: a stopping condition, consisting
in a matching between the goal and the activation level of the corresponding
features.



5.2 Case Study II: An Architecture for Reaching

The second system used to illustrate the IMP and the TOTE in play has been
used to control a simple 2D two-segment arm involved in solving sequential
reaching tasks by reinforcement learning. Here we present only the features of
the system useful for the purposes of the paper and refer the reader to [27] for
details.

Fig. 6. The architecture of the model of reaching. Rectangular boxes indicate neural
layers. Text in boxes indicates the type of neural-network model used. Text near boxes
indicates the type of information encoded in the layers. Callouts indicate the two major
components of the system. The graph also shows the controlled arm and two targets
activating the retina (black dots). See text for further explanations.

The system is mainly formed by two components, a postural controller and a
reinforcement-learning component (“RL component” for short). In a first learn-
ing phase, the postural controller learns how to execute sensorimotor primitives
that lead the arm to assume certain postures in space. In order to do so, while
the system performs random actions (similarly to “motor babbling” in infants,
see [23]), the postural controller learns to categorize the perceived arm’s an-
gles in a 2D self-organizing map [21]. At the same time a two-layer network is
trained, by a supervised learning algorithm [38], to associate the arm’s angles
(desired output pattern) with the map’s representation of them (input pattern).
This process allows the system: (a) to develop a population-code representation
of sensorimotor primitives within the self-organizing map, encoded in terms of
the corresponding “goals” (i.e. postures); (b) to develop weights between the
map and the desired arm’s angles that allow selecting sensorimotor primitives
by suitably activating the corresponding goals within the map.

In a second learning phase, the RL component learns to select primitives to
accomplish reward-based reaching-sequence tasks, for example in order to reach
two visible dot targets in a precise order (see Fig 6 for an example; the RL com-
ponent is an “actor-critic model”, see [36]). Each time the RL component selects



an action (i.e. the achievement of a “desired posture”), the desired arm’s angles
produced by it are used to perform detailed movements (variations of the arm’s
angles) through a hardwired servo-component that makes the arm’s angles to
progressively approach the desired angles (postures): when this happens, control
is again passed to the RL component that selects another action.

IMP and TOTE in play. The system has strong relations with both the IMP
and TOTE, and in so doing it emphasizes their complementarities. In line with
the IMP, in the first phase of learning (motor babbling) the system performs
(random) actions, and learns to associate the resulting consequences, in terms of
the proprioception of the arm’s angles, to them. In the second phase of learning,
the system uses the expected consequences of the actions as goals (expected in
terms of final postures), to trigger the executions of the actions themselves (by
trial-and-error, so as to pursue rewarding states). This feature of the system
is in line with two core features of IMP related to learning the action-effect
relations and using them in a reverse fashion to select actions. However, a first
important departure from the IMP is that the “goals” of the primitives (i.e., the
corresponding previously perceived postures), through which the system selects
the primitives themselves, are not encoded in a “pure” perceptual-like format,
but in terms of more abstract representations generated by the self-organizing
map. This might represent a first step towards a more abstract representation
of goals in the spirit of TOTE.

A second important departure from the IMP is that the system incorporates
a “stop” mechanism on the basis of which, when it achieves the goal for which it
selected the corresponding action, control passes again to the RL component. As
we have seen, this is a typical feature of TOTE. Note how we had to introduce
this “stopping” condition to allow the system to accomplish a task that required
the execution of more than one “action” in sequence (two actions in this case).

From an opposite perspective, it is interesting to notice how by using some
of the core ideas behind the IMP, the system overcomes some limitations of
TOTE. In particular, first it uses experience to create goals’ representations
and to associate them to actions, a core idea of the IMP. Second, it uses motor
babbling to create an association between goals and actions used to achieve them,
overcoming TOTE’s underspecification about how specific actions are selected
in correspondence to a given goal.

5.3 Case Study III: Anticipatory Classifier Systems

The anticipatory learning classifier system ACS2 [3] learns anticipatory repre-
sentations in the form of condition-action-effect schemata, similar to Drescher’s
schema system [7]. However, ACS2 learns and generalizes these schemata online
using an interactive mechanism that is based on Hoffmann’s theory of anticipa-
tory behavioral control [14–16] and on genetic generalization [3]. Similar to the
described arm-control approach, ACS2 executes some form of motor babbling.
It consequently learns a generalized model of the experienced sensory-motor



contingencies of the explored environment. In difference to the above system,
though, ACS2 learns purely symbolic schema representations, in difference to
the dynamically abstracted real-valued sensory information. Generally, though,
such an abstraction mechanism might be linked with the ACS2 approach. More
importantly, though, ACS2 makes sensory-motor contingencies explicit: The sys-
tems learns a complete, but generalized predictive model of the environment.

ACS2 was combined with an online generalizing reinforcement learning mech-
anism, based on the XCS classifier system [39]. The resulting system, XACS [4],
learns a generalized state value function using XCS-based techniques in combina-
tion with the model learning techniques of ACS2. Figure 7 sketches the resulting
architecture. The reinforcement component is intertwined with the model learn-
ing component using the model information for both predictive reinforcement
learning and action decision making. For learning, XACS iteratively updates its
reinforcement component using a Q-learning-based [37] update mechanisms—
testing all possible reachable situations and using the maximum reward value to
update the currently corresponding reward value. For action decision making,
XACS uses the model to activate all immediately reachable future situations
and then uses the reinforcement learning component to decide on which situ-
ation to reach and consequently which action to execute. It was also proposed
that XACS may be used in conjunction with a motivational module representing
different drives. The reinforcement module would then consist of multiple mod-
ules that work in parallel, each module influencing decision making according to
its current importance [4] (see Figure 7).

Fig. 7. XACS realizes the IMP in that it selects actions according to their associated
perceptual effects. A desired effect is selected using the developed motivational module
that is designed to maintain the system in homeostasis. TOTE is realized in that each
iteration currently possible effects are compared with currently desired effects.

IMP and TOTE in play. XACS plays a hybrid role being situation-grounded
but goal-oriented. In this way, goals that cannot be achieved currently will not
have any influence on behavior. Vice-versa, goals that are easily achieved cur-
rently will be pursued first. Due to the generalization in the predictive model
and in the reinforcement component, abstract generalized goal representations
can be reached within differing contexts.

XACS realizes ideomotor principles in that actions are directly linked to their
action effects. Initially, XACS learns such schemata by the means of random ex-



ploration. Goals are coded using the given perceptual input, which is symbolic.
XACS, however, does not start from the goal itself but interactively activates
potential goals (that is, future situations), then chooses the currently most de-
sirable one, which finally triggers action execution. In this way, the system is
goal-driven—but it is grounded in the current situation.

Goal selection is integrated in XACS by the separate reinforcement com-
ponent that links to the behavioral component. Thus, XACS proposes a goal
selection mechanism realized with reinforcement learning techniques. In differ-
ence to TOTE, there is never an explicit test that controls if a goal was reached.
This mechanism is implicitly handled by the reinforcement learning component
in conjunction with the proposed motivational module. Once a goal is reached,
a motivation will become satisfied and thus another drive will control behavior.

6 Conclusions

This paper has investigated the implications of the ideomotor principle (IMP)
and the test operate test exit (TOTE) framework for adaptive behavior and
action selection. It was shown that the frameworks are actually rather closely
related as both stress the importance of goal-oriented action selection. Whereas
goals are represented perceptually and are bidirectionally linked to associated
actions in the IMP, TOTE emphasizes the interactive cycle of triggering actions
by desired goals while iteratively testing if such goals are achieved. Overall the
two frameworks enlighten important aspects of the anticipatory nature of goal-
driven systems. However, neither of them get concrete enough to pinpoint specific
actual implementations.

The three implementations described in the paper not only emphasize the
power of the guidelines proposed by the IMP and TOTE, but also represent
important attempts to give possible answers to the problems left unresolved
by them. With this respect, the paper reviewed three architectures. We now
highlight the lessons learned from putting the theoretical principles of IMP and
TOTE in practice.

– The first architecture was concerned with a visual search task. It had a “goal
node” which contained a test condition (similarly to TOTE) having a sen-
sorimotor encoding (testing two sensorial conditions, color and shape). Like
the IMP, action was preceded and triggered by a pre-activation of the desired
goal state, but like TOTE this happened as a consequence of a mismatch
between the pursued goal and the stimuli. The search proceeded thanks to
the learned action-expectation links, which in this architecture were encoded
both in the modules, which were procedures that attempt to “self-realize”,
and the links between them. Interestingly, to allow the architecture to func-
tion we had to design a mechanism for which the goal to pursue was selected
through an activation with a level above zero (in order to trigger the search)
but below the activation achieved when the state corresponding to it was
actually achieved through action. In fact, if the pre-activation and the acti-
vation had the same level, the test had a positive outcome and the search



immediately stopped. In several experiments it was also found that the initial
amount of pre-activation led to different response times in finding a solution
and could also lead to different search strategies. The interpretation of this
was that such pre-activation encoded a measure of urgency. The IMP and
TOTE do not specify any mechanism to encode quantitative aspects of teleo-
nomic: this is surely an important limitation of the two frameworks pointed
out by the attempt to translate them into functioning efficient computational
systems.

– The second one is a neural architecture directed to tackle reaching problems
with a simple simulated arm. This architecture highly benefited from the
suggestion given by the IMP to create the association between goals and
actions suitable to tackle them, through experience (learning), and then to
use goals to suitably trigger such actions. On the other side, it also high-
lighted the importance of testing the achievement of goals, similarly to what
is suggested by TOTE, to suitably give control either to the reinforcement-
learning selector of actions or to the execution of the actions themselves.
On the other side the architecture also raised the necessity to have distinct
representations of goals to pursue and current states of the system in order
to be in the condition of performing such tests.

– The XACS architecture is a more symbolically-based architecture that en-
ables the pursuance of different goals. It implements the IMP directly form-
ing a forward model of its environment, using its forward model to trig-
ger action execution. In TOTE it remains underspecified how goals may
emerge and how they may trigger actions. Also the IMP does not spec-
ify how desired perceptual states are triggered, nor how the bidirectional
sensory-motor knowledge activates appropriate actions. XACS proposes an
interlinked process that (1) activates all reachable (currently immediate)
future states and (2) selects that action that leads to the currently most
desirable one. Multiple goals may thus be active concurrently and the most
relevant and most reachable goal will be pursued.

With such a conceptualization and characterization of IMP and TOTE in
hand, the next step along this line of research will be to further investigate the
many questions left open by the two principles, as well as to further identify
the specific advantages and disadvantages stemming from the actual implemen-
tations. Hereby, it will be important to use real-world simulations, or actual
robotic platforms, both (1) to identify the issues left unresolved, and, at the
same time, (2) to crystallize the true potential of the anticipatory principles
proposed.
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