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Abstract. When monkeys tackle novel complex behavioral tasks by trial-and-
error they select actions from repertoires of sensorimotor primitives that allow 
them to search solutions in a space which is coarser than the space of fine 
movements. Neuroscientific findings suggested that upper-limb sensorimotor 
primitives might be encoded, in terms of the final goal-postures they pursue, in 
premotor cortex. A previous work by the authors reproduced these results in a 
model based on the idea that cortical pathways learn sensorimotor primitives 
while basal ganglia learn to assemble and trigger them to pursue complex re-
ward-based goals. This paper extends that model in several directions: a) it uses 
a Kohonen network to create a neural map with population encoding of postural 
primitives; b) it proposes an actor-critic reinforcement learning algorithm capa-
ble of learning to select those primitives in a biologically plausible fashion (i.e., 
through a dynamic competition between postures); c) it proposes a procedure to 
pre-train the actor to select promising primitives when tackling novel rein-
forcement learning tasks. Some tests (obtained with a task used for studying 
monkeys engaged in learning reaching-action sequences) show that the model is 
computationally sound and capable of learning to select sensorimotor primitives 
from the postures’ continuous space on the basis of their population encoding. 

1   Introduction 

This research is motivated by the idea that when humans and monkeys learn to solve 
complex tasks by trial-and-error they select and execute sensorimotor primitives (that 
is behavioral chunks that tend to achieve whole goals, cf. [2, 6, 7]) that have a coarse 
granularity with respect to the detailed commands sent to muscles. By using these 
primitives, they can learn to tackle complex tasks by assembling relatively few “be-
havioral chucks” instead of a multitude of fine muscular movements that would make 
the problems’ search space huge. The computational advantages of this strategy have 
been explored in reinforcement learning literature (see [4] for a review; note that 
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within this context sensorimotor primitives are called “macro actions” or “options”). 
This work is part of a research program directed to design, implement and test compu-
tational models that not only mimic animal’s behaviors organized on sensorimotor-
primitive repertoires, but also account for the neuroscientific evidence related to the 
brain’s mechanisms underlying them. With this regards, an increasing amount of 
empirical evidence is giving specific indications on how vertebrates’ brains encode 
repertoires of sensorimotor primitives and select and assemble them to flexibly pro-
duce complex behaviors. For example, it has been shown that when different areas of 
frogs’ spinal cord are electrically stimulated, their lower limbs tend to assume a dis-
crete number of particular postures in space independently of the initial configuration 
[6]. Moreover, recordings of neurons’ activity in premotor areas controlling arms in 
monkeys that freely move in ecological conditions showed that the biggest amount of 
variance of the neurons’ firing rate is explained by the final postures achieved by the 
limbs [1, 8]. Remarkably, other aspects of movement previously hypothesized to be 
encoded in premotor cortex, such as direction of movement, hand position, torques, 
and speed of motion, explained much less or none of the remaining variance.  

A general hypothesis on the brain’s architecture that might underlie reinforcement 
learning and behavior based on sensorimotor primitives has been proposed in [10] and 
has been used for building a modular reinforcement-learning model in [3]. According 
to this hypothesis sensorimotor primitives are acquired and executed by cortical path-
ways that involve sensory, associative, premotor, and motor cortex. These primitives 
are then assembled, selected and triggered to produce reinforcement-based complex 
behavior by basal ganglia (deep nuclei of vertebrates’ brain that receive input signals 
from virtually the whole cortex, send output signals mainly to pre-frontal, premotor 
and motor cortex [12], and play an important role in chunking and assembling motor 
primitives in order to accomplish complex reinforcement-based behaviors [7, 8, 11]). 
This hypothesis has been further investigated in [16] by building a biomimetic model 
that explicitly incorporates the aforementioned biological evidence reported in [1, 8]. 

As the model presented shares many features with the model reported in [16], first 
these features are reviewed and then the main novelties introduced here are high-
lighted. In both models sensorimotor primitives are neural schemes that allow the 
system to produce sequences of fine movements that lead the arm to assume particular 
final postures. Both models learn the primitives through a direct inverse modeling 
process [14] based on spontaneous random movements performed by the system. The 
latter aspect of the process is interesting as it is very similar to motor babbling ob-
served in infants [15] and might have functions similar to it. In both models, random 
movements are used for learning to associate limbs’ final postures with the move-
ments that led to them. Final postures are represented in a 2D neural map that mimics 
the function of premotor cortex reported in [1, 8]. Note that such final postures can be 
considered as the goals of the corresponding primitives, in fact: (a) the activations of 
the map’s units correlate with the final postures of primitives, but not with other as-
pects of them (e.g., initial and intermediate postures); (b) the activations take place 
before the corresponding final-posture states are achieved; (c) the activations drive the 
system to act in order to get in the states that they encode. The representation of 
primitives in terms of their goals in the map has the computational advantage of being 
(almost) local: this eases the selection of them by reinforcement-learning systems (see 
section 2). Both models assume that basal ganglia select primitives by fueling a  
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dynamic competition between their representations in the map: the representation that 
wins the competition triggers the execution of the corresponding primitive. In both 
models, the functionalities of basal ganglia are reproduced with an actor-critic rein-
forcement-learning model [23]. This model captures several anatomical and physio-
logical properties of basal ganglia [3, 10, 11]. The dynamic competition between 
goals is simulated through an accumulator model [24]. Accumulator models are 
among the best behavioral models of decision making and reaction times; moreover, 
the activation patterns of their units are similar to those of neurons of premotor cortex 
of monkeys engaged in action selection tasks [21, 22]. 

The first novelty of the model presented here is that, while in [16] the representa-
tions of the sensorimotor primitives’ goals in the 2D map were hand coded, they are 
now developed through a Kohonen network [13] which takes the arm’s angles as 
input. This has the advantage of leading the map’s units to cover the space of “legal” 
postures in a uniform fashion. Moreover, contrary to [16], the model is now capable 
of representing all possible postures of the arm in the continuous space of postures by 
representing them through a population encoding [18]. To this purpose, the previously 
used winner-take-all dynamic competition taking places within the accumulator 
model has been substituted with a many-winner dynamic competition. A second nov-
elty is the proposal of a modified version of the actor-critic reinforcement-learning 
algorithm capable of selecting postures on the basis of such population encoding (to 
the best of the authors’ knowledge, the learning rule used for training the actor is 
new). A third novelty is that the system performs a “pre-training” of the actor on the 
basis of the same motor babbling used for training the sensorimotor primitives. This 
pre-training allows the actor to learn to associate the perceived hand’s position with 
the posture that produces it, and so biases the actor to select sensorimotor primitives 
that drive the hand on salient points in space such as those occupied by objects. This 
greatly speeds up learning when the system tackles new reinforcement-learning tasks. 
The whole architecture is tested through a task similar to the one used in [19] to con-
duct physiological studies in monkeys engaged in reinforcement-learning action-
sequence tasks. 

The paper is organized as follows. Section 2 illustrates the architecture and func-
tioning of the model, and the task used to test it. Section 3 presents the results of the 
tests. Section 4 illustrates the strengths of the model, its limitations, and future work. 

2   Methods 

The Task. The model has been tested with a task similar to the one used by Hikosaka 
and coworkers [19] to carry out physiological studies of various brain’s districts (e.g., 
frontal cortex, basal ganglia, and cerebellum) of monkeys engaged in learning to 
perform sequences of reaching actions. In this task a monkey is set in front of a panel 
containing 16 LED buttons. These buttons are contained in 16 squares organized in a 
4×4 grid, each with sides measuring 5 cm (see Fig. 7). The task (see figure Fig. 1) is 
formed by “hypersets”, each composed of five “sets” organized in sequence. In each 
set, two buttons turn on and the monkey has to press each of them in a precise se-
quence, which has to be discovered by trial-and-error, in order to obtain a reward. In 
case of error, the task re-starts from the first set, while in case of success the task 
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continues with the second set, and so on, until it terminates with the fifth set. Here for 
simplicity: (a) the test is composed of only one particular hyperset (see Fig. 1) pre-
sented to the system several times; (b) the buttons involved in different sets are differ-
ent; (c) the first LED to be “pressed” in each set is turned off when reached. 

 
 
 
 
 
 

Fig. 1. The “hyperset” of Hikosaka’s task used for testing the architecture. Each grid represents 
a “set”: numbers “1” and “2” represent the two LEDs to be reached in sequence within the set. 

The system’s “body”. The system is composed of a two-segment arm that moves on 
a 2D plane (Fig. 7, left), and a 2D retina. The retina is formed by 20×20 units and is 
supposed to correspond to an “eye” that watches the whole area that the arm can reach 
from above. The retina’s visual field has a size of 40×40 cm and is centered on the 
arm’s shoulder joint (so as to cover the whole area that the arm can reach). The cen-
ters of the retina’s units are organized in a 20×20 grid that cover to whole visual field. 
The two segments of the arm measure 20 cm each. The arm has two degrees of free-
dom: the upper arm can move 180° with respect to the system’s torso, by pivoting on 
the shoulder joint, while the forearm can move 180° with respect to the upper arm, by 
pivoting on the elbow joint (only simple kinematics of the arm were simulated).  

The Architecture of the Model. The architecture of the model is shown in Fig. 2. 
The functioning and learning processes of its components will now be explained in 
detail (note: the corresponding brain parts will be indicated in Italics in brackets). 

The retina’s units are activated by LEDs. Each LED is simulated as a point with 
coordinates (c1, c2) and when it is on, it activates the retina’s units with an activation 
xi ∈ [0, 1] on the basis of Gaussian receptive fields having standard deviation σ (0.75 
cm) and centers (c1i, c2i) that correspond to the positions of the units in the visual 
field: 
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The actor-critic components are a neural implementation of the actor-critic model 
[23]. The actor (basal ganglia’s matrix, cf. [10]) is a two-layer feed-forward neural 
network with 20×20 input units, that correspond to the units of the retina, and 20×20 
output units. The output units have a Sigmoid transfer function with activation yj and 
each has a topological one-to-one connection (with weights equal to υ = +1) with the 
posture controller’s input units. The critic (basal ganglia’s striosomes and substantia 
nigra pars-compacta, cf. [10]) is mainly composed of a neural network (“evaluator”) 
having a linear output unit. At each step t this output unit produces evaluations Vt of 
perceived states, and the critic uses couples of successive evaluations, together with 
the reward signal Rt, to compute the surprise signal St  (dopamine) (cf. [23]):  
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where γ is a discount factor (γ = 0.3). The surprise signal is used for training both the 
actor and the evaluator (see [10, 23] and the learning algorithms presented below). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. The neural components of the architecture with the corresponding brain areas in Italics. 
Symbols: grouping: broad functionalities implemented by the architecture’s main parts; bold 
arrows: all-to-all trained connections; thin arrows (only few of them are shown): one-to-one 
connections (weights = +1); dashed arrow: surprise learning signal; dotted arrow: delay connec-
tion; the weights of the critic’s one-to-one connections are indicated in the figure. 

The accumulator units (premotor cortex) form a 2D 20×20 map, have all-to-all lat-
eral inhibitions, and have local excitations that decrease with distance on the map. 
The units engage in a many-winner competition on the basis of the signals (“votes”) 
that they receive from the actor’s output units via the one-to-one connections. In par-
ticular, they behave as leaky-integrators and have an activation aj as follows: 
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where τ is a time constant, corresponding to 1/10s, dt is the integration time step (dt = 
0.05 1/10s, so dt/τ = 0.05; aj is numerically updated every 0.005 s), χ regulates the 
speed of the dynamics (χ = 1), δ is a decay coefficient (δ = 0.1), ι regulates the all-to-
all lateral inhibition (ι = 0.15), η regulates the local lateral excitation (η = 1), ek 
represents the fixed weights of the lateral excitatory connections (ek is set to 0.4 for 
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neighboring units along the x/y-axes directions, to 0.2 for neighboring units along the 
diagonals, and to zero for all other units), εjt is a noise component that ranges over [-0.1, 
+0.1] and varies in each cycle, εjc is a noise component that ranges over [-0.25, +0.25] 
and is constant for time intervals c randomly drawn from [0, 5] s (εjc is important for 
exploration of reinforcement learning as various εjt tends to sum to zero over many 
steps). When the activation aj of one accumulator unit reaches a threshold T (T = 1.9), 
the total activation of accumulator units is normalized to 1, their dynamics is “frozen”, 
and the execution of a reaching sensorimotor primitive is triggered. 

The posture controller has an input-unit layer corresponding to the accumulator units 
and two Sigmoid output units, with activation d’k, that range over [0, 1] (motor cor-
tex/spinal cord neurons). The activations of these output units are remapped onto the 
arms’ angles and form the commands issued to the posture servomechanism in terms of 
arms’ desired angles (posture). It is important to notice that these desired angles are 
generated by the cluster of accumulator units that are active at the end of the many-
winner competition. This implies that the target of the executed sensorimotor primitive 
is a mixture of the targets “suggested” by all active units: this population encoding al-
lows the arm to cover the whole continuous space of postures. 

The posture servomechanism is a hardwired closed-loop controller (Golgi tendon-
organs, muscle-fiber afferents, and spinal cord, cf. [22]) that issues commands to the 
arm’s actuators (muscles) on the basis of the desired-posture command received from 
the posture controller. In practice, this component simply changes the arm’s current 
angles in the direction of the desired angles, with maximum changes of 10 degrees. 

Learning Phases. The learning processes take place in two phases, the childhood 
phase (three processes) and the adulthood phase (one process). Now we first present an 
overview of these learning processes and then describe them in detail.  

During the childhood phase the system performs motor babbling: in practice the arm 
randomly varies its joints’ angles, with changes Δd’k belonging to [-10, +10] degrees, 
without violating the joints’ constraints. Motor babbling is used for performing three 
learning processes. The first two processes allow the system to learn to perform sen-
sorimotor primitives, in particular: (a) to train the 2D map of accumulator units, through 
a Kohonen algorithm [13], to represent the postures perceived by the proprioceptive 
units dk (during the childhood phase the proprioceptive units, the accumulator units, and 
their connections, function as a Kohonen network); (b) to train the posture controller, 
through a Widrow-Hoff algorithm [20] (the generalized “delta rule”), to return as output 
the arm’s angles corresponding to postures encoded in the Kohonen map. These two 
training processes lead the whole network formed by the Kohonen network and the 
posture controller to implement an “auto associative” function (i.e., the arm’s angles 
encoded in the proprioceptive units are returned by the postural controller’s output 
units). This whole network allows the system to recode postures, at the level of accumu-
lator units, in an expanded format suitable to perform actor-critic reinforcement learning 
(cf. [23]). Notice that suitable population encodings at the level of the accumulator units 
allow the system to select any posture in the continuous space of postures: this is pre-
cisely what the actor-critic components learn to do while solving reinforcement-learning 
reaching tasks in the adulthood phase. 

With the third learning process of the childhood phase the system’s actor learns, 
through a Widrow-Hoff algorithm, to associate the point in space where the retina sees 
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the arm’s “hand” (i.e., the forearm segment’s tip) with the activation pattern of the Ko-
honen map’s units corresponding to such point (pattern caused by the arm’s perceived 
angles). With this training, the actor acquires a bias to select sensorimotor primitives 
that drive the arm’s hand to points in space corresponding to the retina’s active units. 
This bias makes reinforcement learning performed during the adulthood phase quite fast 
notwithstanding the fact that the continuous space of postures is quite large. Note that 
two simplifying assumptions allow obtaining this result: (a) the retina does not perceive 
the arm and hand in the adulthood phase; (b) retina’s units activated by the hand in the 
childhood phase are activated by the LEDs in the adulthood phase. 

During the adulthood phase the system learns by trial-and-error to accomplish Hiko-
saka’s task. The actor-critic model used to this purpose has been suitably modified to be 
capable of selecting “actions” represented with population encodings. The four learning 
processes are now illustrated in detail. 

Childhood phase: training of the Kohonen network. During the childhood phase, 
while the system performs motor babbling, the accumulator units receive input signals 
from two input units, having activation dk, that encode the arm’s current angles (remap-
ped in [-1, +1]: this information is thought to be returned by proprioceptive sensors 
located in the muscles, e.g. Golgi tendon-organs and muscle-fiber afferents, cf. [22]). 
An extra pseudo input unit is used to perform a “z-normalisation” of the input pattern: 
this is a normalization that preserves size information [13]. The accumulator units are 
trained with a Kohonen algorithm [13] that allows them to develop representations of 
the arm’s angles in their weights. The output units give place to a winner-take-all com-
petition: the unit with the highest activation potential activates with 1 (“winning unit”), 
while the other units activate at levels decreasing with their distance from the winning 
unit on the basis of a Gaussian function. In particular, the activation a’j of the unit j and 
the rule to update its weights wjk are as follows: 
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where hfj is the distance on the map between the unit j and the winning unit f (hfj = 1 for 
two contiguous units), σ is the standard deviation of the Gaussian function (σ = 1), φ is 
a learning coefficient (φ = 0.01). Note that the Kohonen algorithm uses a winner-take-
all competition to activate the accumulator units instead of the dynamic competition 
reported in equation 3, used in the adulthood phase: indeed, the former tends to lead to 
an activation of the accumulator units that approximates the steady state activation that 
the same units would get through the latter (cf. [13]). 

Childhood phase: training of the posture controller. The posture controller is trained 
on the basis of a direct inverse modeling procedure [14] that exploits the random 
movements Δd’k produced by motor babbling as follows: (a) the arm’s angles are per-
ceived and categorized by the Kohonen net; (b) a Widrow-Hoff algorithm ([20], learn-
ing rate = 0.3) is used for training the posture controller’s weights wkj to associate the 
Kohonen-map units’ activation (input pattern) with the angles d’k caused by the random 
movements considered as desired output.  

Childhood phase: pre-training of the actor. Through this pre-training, based on a 
Widrow-Hoff algorithm, the actor’s weights wji are trained to associate the position of 
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the hand perceived with the retina (input pattern x) with the corresponding posture (de-
sired output a’) encoded in the Kohonen map (learning rate 0.1). 

Adulthood phase: actor-critic’s reinforcement learning. During the adulthood phase, 
the actor-critic component is trained to solve the Hikosaka’s task by reinforcement 
learning. During training, Rt is set to 1 when the arm reaches the two targets of any set 
of the hyperset in the correct order, and to 0 otherwise. The evaluator is trained after the 
selection and execution of a whole sensorimotor primitive (the primitive terminates 
when the arm reaches the desired posture selected by the posture controller). In particu-
lar its weights wi are trained, on the basis of a Widrow-Hoff algorithm (learning rate ψ = 
0.6) and a TD-rule (cf. [23]), as follows: 

( )( ) 11111  −−−−− −++=+= ittttitittitit xVVRwxSw w γψψ  (5) 

Through this learning process, the evaluator’s evaluations Vt of the perceived states xt 
tend to become higher for states corresponding to postures “closer” to reinforced 
states, and to form a gradient over the space of postures. The actor uses this gradient 
to learn to select highly rewarding sequences of primitives (cf. [23]). In particular the 
actor updates its weights wji with a Widrow-Hoff algorithm (learning rate ζ = 0.6): 
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where (yjt-1(1-yjt-1)) is the derivative of the Sigmoid function. The functioning of this 
learning rule is illustrated in Fig. 3. The rule tends to update only the weights of the 
units of the “winning cluster” because the activation aj of other units tends to be zero 
at the end of the race. The votes of the winning units are decreased or increased in 
correspondence of respectively positive and negative surprises. 

 
 
 
 
 
 

Fig. 3. Effects of the actor’s learning rule of equation 6 illustrated with a scheme relative to a 
1D layer of actor’s output units (horizontal axis). Left: with a surprise St > 0, the actor’s votes 
yt-1 (upper graph), that caused certain accumulator units’ final activations at-1 (lower graph), are 
moved toward the target yt-1+St at-1 (upper graph): this causes the votes of the winning cluster of 
accumulator units to increase (bold arrow) while other votes are not changed. Right: with a 
surprise St < 0, actor’s votes yt-1 are moved toward the target yt-1+St at-1: this causes the votes of 
the winning cluster of accumulator units to decrease, while other votes are not changed. 

3   Results 

Now we present some tests that prove the computational soundness of the model, 
illustrate the functioning of its components, and show its capacity to learn sensorimo-
tor primitives, by motor babbling, and to compose sequences of them, by reinforce-
ment learning, on the basis of their population encoding. 
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During the first training of the childhood phase, the Kohonen network’s error 
(measured as the average over 1,000 cycles of the square of the norm of the difference 
between the vector of weights and the vector of the input pattern) decreases from 
0.411 to 0.034 after 600,000 random arm’s movements. After this training the net-
work learns to represent the whole perceived postural space by using its units in a 
statistically well-distributed fashion (Fig. 4, left graph). This representation is at the 
basis of the population encoding of postures used in the adulthood phase. 

     

Fig. 4. Left: result of the training of the Kohonen network. Each vertex of the grid represents a 
node of the Kohonen map, and its x-y coordinates correspond to the node’s two weights encod-
ing the arm posture. Right: errors of the posture controller after training, collected while the 
arm produces several random movements; the graph represents the errors as gray segments 
plotted between the x-y positions of the hand corresponding to the target actual posture (e.g., 
black arm) and the position that the hand would have achieved on the basis of the posture con-
troller’s output pattern (e.g., dark gray dashed arm; the light gray dashed arm indicates the 
previous posture assumed by the arm during motor babbling). 

During the second training of the childhood phase, the posture controller’s error 
(measured as the average over 1,000 cycles of the distance between the point 
reached by the arm and the target point) decreases from 8.62 cm to 1.19 cm. Note 
that this error cannot become very low since the Kohonen network’s units are acti-
vated on the basis of a Gaussian function centered on the winner units, that are in a 
finite number, while the desired output belongs to the whole continuous space of 
arm’s postures. Indeed, the right graph of Fig. 4, which shows the residual errors 
after training, indicates that the hand tends to reach only few specific points corre-
sponding to the vertex of a grid that covers the whole postural space (this grid is 
explicitly represented in Fig. 5, right graph). In the adulthood phase, this problem is 
overcome by the population encoding of postures resulting from the accumulator 
units’ activation.  

During the third training of the childhood phase, the actor’s error (measured as the 
output units’ mean error averaged over 1,000 cycles) decreases from 0.513 to 0.052. 
This training leads the system formed by the actor, accumulator units, and postural 
controller to acquire the capacity to perform fine reaching movements in the continu-
ous space of postures even if the accumulator units cover such space at a gross  

Previous posture 
Net’s output posture 
Target posture 
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granularity. This can be illustrated by showing the system a sequence of 100 targets 
positioned along a circumference having a ray of 10 cm and located near the arm’s  
shoulder (see Fig. 5, right graph). The left graph of Fig. 5, which shows the errors 
between the targets and the points reached by the hand in the test, indicates that the 
errors are very small (mean: 3.2 mm). Moreover, and more importantly, the system 
succeeds in reaching virtually any point in the continuous space of postures even if 
the accumulator units cover such a space with a gross granularity. This skill depends 
on the mentioned accumulator units’ capacity to represent postures by population 
encodings.  

   

Fig. 5. Left: errors (indicated by the gray segments) between 100 target points positioned on a 
circumference (shown in the right graph) and the corresponding points reached by the hand. 
Right: activation (proportional to the size of the full dots) of the actor’s output units caused by a 
target. The positions of the dots and vertexes of the grid plotted in the graph correspond to the 
positions of the hand related to the “postures” encoded in the accumulator units’ weights of the 
posture controller. 

During the adulthood phase, the system is tested with the Hikosaka’s task illus-
trated in section 2. During 120,000 learning cycles, the performance of the system 
(measured as a 1000-step moving average of rewards) increases from 0.187 to the 
theoretical maximum of 0.500, when it successfully completes all the five sets of 
the task in sequence. The results show that the pre-training of the actor gives it a 
useful bias to reach the targets perceived by the retina. In particular the left graph of 
Fig. 6, reporting the activations of the actor’s output units when the system sees two 
targets, shows that the units that “vote” for the two possible correct arm’s postures 
form two clusters and have an activation higher than that of other units. The same 
figure (right graph) shows that the two clusters compete, at the level of the accumu-
lator units, and only one of them “survives” and triggers the corresponding arm’s 
posture when the activation of one of its units reaches the threshold. The left graph 
of Fig. 7 shows how the arm moves from one target to another, after target postures 
have been selected, on the basis of the postural servo controller. The same figure 
(right graph) also shows that the final points reached by the trained arm are quite 
accurate. 
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Fig. 6. Left: activations of the actor’s output units before adulthood training caused by the 
perception of two targets in the Hikosaka’s task (the area of the gray dots and black circumfer-
ences is proportional to the units’ activations respectively before and after the addition of 
noise); the two arrows indicate two clusters of units with activation higher than that of the other 
units due to the actor’s pre-training. Right: activation of the same units after training; notice 
how one of the two clusters has been strengthened while the other one has disappeared; the 
activation of the units of the strengthened cluster cause an activation of the accumulator units, 
at the end of the race, as plotted in the bottom right small graph. 

       

Fig. 7. Left: the trained arm that moves from the first to the second LED of “set 1” of Hiko-
saka’s test under the control of the postural servomechanism (the two LEDs are represented by 
the black and light gray squares in the right graph). Right: panel with the LEDs, with gray dots 
indicating the positions reached by the hand of the trained arm in several trials of the hyperset. 

4   Conclusions 

This paper presented an architecture to solve reaching tasks by reinforcement learn-
ing. The architecture is based on the idea, suggested by recent neuroscientific re-
search, according to which monkeys’ sensorimotor behavior involving upper-limbs is 
organized on the basis of a repertoire of sensorimotor primitives that are represented 
in premotor cortex in terms of the limbs’ final postures that they produce. The archi-
tecture uses motor babbling to learn sensorimotor primitives, develops a map of units 



392 D. Ognibene, A. Rega, and G. Baldassarre 

that represent the corresponding postures on the basis of population encodings (so 
mimicking premotor cortex), and selects primitives on the basis of a biological-
plausible accumulation model. Moreover, it proposes a novel learning rule which 
allows the actor of the actor-critic component (supposed to correspond to basal gan-
glia) to learn to select sensorimotor primitives on the basis of the population-encoding 
of their postural goals. The relevance of these novelties resides in the fact that popula-
tion-encoding representations are widespread in real brains [18], so it is important to 
have reinforcement-learning models that can function on the basis of them. 

The main limitations of the architecture that will be the starting point for future 
work. First, tests are needed to verify if the system can scale to arms with redundant 
degrees of freedom and/or to arms with a number of degrees of freedom higher than 
the number of the dimensions of the Kohonen network. Second, the Kohonen network 
functions on the basis of a winner-take-all competition: in the future this will be sub-
stituted with the same many-winner competition used while performing reinforcement 
learning. This improvement is relevant for the biological plausibility of the system. 
Third, although very detailed, the architecture takes into account only a part of the 
relevant available neuroscientific empirical evidence. For example, it does not model 
the different time courses of learning in basal ganglia and prefrontal cortex [17], the 
role of basal-ganglia direct and indirect pathways [10, 12], the possible separation of 
selection vs. control pathways [9], and the role of ventral and dorsal portions for ap-
petitive and consummatory behaviors [5]. 
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