Quasi-Online Reinforcement Learning for Robots

Bram Bakket, Viktor Zhumatiyf, Gabriel Gruenét and Jirgen Schmidhubér
*Informatics Ingtitute, University of Amsterdam, the Netherlands, bram@science.uva.nl
fIDSIA, Manno-Lugano, Switzerland, {viktor, juergen}@idsia.ch
$CSEM, Alpnach, Switzerland, gabriel.gruener @csem.ch
$TU Munich, Germany, juergen.schmidhuber @in.tum.de

Abstract— This paper describes quasi-online reinforcement based on this model. Directed exploration based on the model
learning: while a robot is exploring its environment, in the back- and policy learned so far, and a reward function transformed
ground a probabilistic model of the environment is built on the 5 principled way, provide additional speed-ups. The ltesu
fly as new experiences arrive; the policy is trained concurmtly
based on this model using an anytime algorithm. Prioritized IS that the rOb_Ot Ieams very qu'.Ckly' both in terms of 'feqd'r
sweeping, directed exploration, and transformed reward func- environment interactions and in terms of computation, and
tions provide additional speed-ups. The robot quickly leans goal- from an outside perspective learns the behavior online and
directed policies from scratch, requiring few interactions with the jn real time.
environment and making efficient use of available computatin In this work we formalize the robot task as a Markov Deci-

time. From an outside perspective it learns the behavior orhe
and in real time. We describe comparisons with standard metods ~ SION Process (MDP). The next section briefly reviews MDPs

and show the individual utility of each of the proposed techiques. and corresponding standard solution methods, value iterat
and Q-learning. Section Il describes, in turn, each of the

| INTRODUCTION investigated techniques to accelerate RL. Section |V dsssr
) T]] ~ the robot and its task. Section V describes experiments ithone
Reinforcement learning (RL) [9] is an attractive techniqugimylation and with a real robot. Section VI, finally, pre&en

for robots, because it allows them to autonomously learngggeneral discussion of the results and possible future .work
great variety of tasks based on a straightforward trial anor e

process and simple scalar reward signals. However, oneeof th ||. MDPsS AND STANDARD SOLUTION TECHNIQUES
main problems is that standard RL techniques require maRy MDPs
learning iterations, i.e. many state-action-reward-netete
interactions with the environment. In the case of robotshea The robot task is formalized as a Markov Decision Process
interaction with the environment is typically very expams{in (MDP). An MDP M is a tuple(S, A, 7,R). S is a finite set
terms of time), making standard RL techniques impractical of statess, some of which may be terminal statesis a finite
This paper reports on work on accelerating RL usinget of actions:, whose availability may depend on the state.
an innovative combination of the following techniques and@ : S x A x § — [0,1] defines the state transition function

applying them to a real robot: that describes the probabiliy(s’|s,a) that the system will
« Dyna-like online model learning [8], [6] move from states to s’ after performing the action € A.
« Prioritized Sweeping (PS) [2], [5] R :SxAxS — IR defines the expected immediate real-
« Directed exploration [8], [2], [6] valued reward (s, a, ') when actioru is taken in state and
« Transformed reward functions [3] the transition tos’ is made.

In a sense, we investigate how well reinforcement IearniggThe objective is to determine a poliey: 5 — A which at

from scratch can work for robotics, using these techniquédiScrete time step selects an action; given the state; and
without resorting to extensiva priori learning or program- which maximizes the expected discounted future cumulative

ming. reward, or returnt;+re 1 +72rito+... = >, ¥'ri4, where

One contribution of this paper lies in the novel combinatiofi € [0, 1] is a factor which discounts future rewards.
of techniques. Secondly, these techniques have, by theessel
rarely or never been investigated on real robots, and \ﬁe
describe adaptations to make them applicable and pantigula MDPs with known state transition functions and reward
well-suited to real robots. Thirdly, we provide a systematifunctions can be solved optimally using dynamic prograngmin
evaluation of their individual contributions, and comptrem methods. Because it uses a model, this approach may be called
to standard techniques. model-based RL.

The investigated combination of techniques allows for Dynamic programming iteratively computes the value func-
quasi-online reinforcement learnings the robot is exploring tion Q(s,a), which represents the estimate of the expected
its environment, in the background (in the control compsterreturn attainable from each state. It is guaranteed to ¢geve
idle time) a model of the environment is built on the fly aso the optimal value functiod)*(s, a), which represents the
new experiences arrive, and the policy is trained conctigrenmaximum attainable expected return. One well-known method

Value iteration

value iteration, repeatedly sweeps through the stateraset of the environment, which means that model uncertainty and
of the MDP and updates each state-action value accordingthe current policy can guide exploration. In this way model
, , . uncertainty can automatically be corrected, and the moatel ¢
- Zp(s |s:a)lr(s, a,8") +7H}3XQ(S @)l (D) pecome most precise in those areas of the state-action space
' which are most relevant for the policy, because exploratiitin
until the largest change in value of any of the state-acti@gcus on those areas. The disadvantage of Dyna, on the other
pairs, A, is smaller than a small constant threshold. Aftaiand, is that early experience can lead to an initially irfemzr
convergence, the optimal policy is followed by simply takin and incomplete model, which may bias the learning of the

the greedy action in each state a* = argmax, @*(s,a). policy in inappropriate ways. Below we provide solutions fo
With n states and a maximum ofi admissible actions for this issue.

any state, value iteration requires for each sweep throogh S .
state space at moét(mn) operations in the deterministic case E Prioritized Sweeping
andO(mn?) operations in the stochastic case. Because of this, Prioritized Sweeping (PS) [2], [5] can be understood as

. model that is learned can be used for value iteration, i.e. it
C. Q-learning must contain explicit state transition probabilitipés’|s, a)

When a model of the environment is not available, one mayd expected rewardss, a, s').
learn value functions and/or policies directly from expene,
without using a model. This is called direct or model-free RL Initialize Q(s,a), p(s'|s,a), andr(s,a,s’) for all s € S

The most widely used model-free RL algorithm is Q- anda € A
learning [10]. The basic idea is to incrementally estimate loop
values of state-action pairs, Q-values, based on expexenc s < current (nonterminal) state
rewards in the environment and the currently estimated |Q- a < exploratiors, Q)

values. When an actioa is taken in states, next states’ is Promote(s, a) to top of priority queue
observed, and rewardis received, the corresponding Q-valye Execute actioru
is updated by while there is time and priority queue not emptg
., Remove top state-action pair from priority queue and
Q(s,a) — Q(s,a) +alr + ’YHE}XQ(S a') = Q(s,a)] (2) call it (sp,a,)
where « is a learning rate parameter. Convergence to the <—Zp Splsp, ap)l (sp,ap,s;,)+7mng(s;,,a;)]
optimal values is guaranteed under certain standard ¢onslit af’
[10], [9]. However, typically many interactions with thevén A~ |Qp Q(sp, ap)|
ronment are required for convergence to a good or optimal Q(sp, ap) «— Qp
value function and policy. it Q(sp,ap) = maxq Q(sp,a,) andA > 0 (a tiny
threshold)then
[1l. TECHNIQUES FOR ACCELERATINGRL for all (SZa g) e predecesso(sp) do
A. Dyna P <—p(3p|3 p A
The Dyna framework [8], [6] assumes, like Q-learning, that it P> 0 and (sp, @) not on priority queue, or
no model of the environment is availabdepriorj and learns P exceeds current priority ofs;;, a;)) then
from experience. However, unlike Q-learning, it uses each promote(s;, a;,) to new priority P
state-action-reward-next state experience to not onlyatepd ~ Observe state’ and reward: resulting from actioru
the policy, but also to simultaneously learn a predictivedeio Update modelp(s[s, a) andr(s, a, s’), based ons',r

of the environment; and this model is used concurrently Wgorithm 1: Pseudocode of parallel anytime Prioritized
train the policy. In Sutton's [8] simple Dyna version, eaclsweeping, as it used in this paper.

real experience leads to one value update (eq. 2), as it does i
standard Q-learning, but now each real experience is fedbw PS modifies the way of doing value iteration updates, com-
by n simulated experiences produced by the model, all leadipgred to standard value iteration. Rather than doing fudleps
to additional standard Q-learning updates. through the entire state-action set, PS focuses compugtio
A related, standard approach in applying RL and otheffort where it can do the most good. That is, it gives pnporit
learning techniques to robots [4] is to build or learn a modé& those state-action pairs whose Q-values are most likely t
of the environment in an initial, system identification plashave the largest changes. This is implemented by maintainin
In the next phase, model-based learning techniques are uagtiority queue and placing state-action pairs on the priority
to learn the policy offline. Finally, the resulting policy isqueue depending on the change in Q-values of their suceessor
transferred to the robot. In contrast to that approach, Dy®adter all, if their successors have large changes in vahesd
allows the RL method to explore and learn truly autonomoustyate-action pairs will likely have large changes in valass
and online, without different phases assigned by humangell (see eq. 1). Value iteration updates are done on state-
Model and policy are learned concurrently with exploratioaction pairs in the order indicated by the priority queuee Th

priority queue is itself continuously updated after eaclu@a standard Boltzmann exploration, which assigns probaslit

iteration update. of action selectiorp(s, a) in proportion to values [9]:
In a sense, PS can achieve the best of the worlds of model-
based and model-free RL methods. Like model-based meth- eQ (sa)/7
ods, it maximally exploits information from real experiesdo p(s,a) = S e@t(sa)/T)

learn a model and maximally exploits the model by doing full
value iteration updates rather than sample-based valustesad Wherer is the so-called temperature parameter.
At the same time, like model-free methods it focuses itsreffo The net result is exploration that favors actions which are
on updatingrelevantstate-action pairs’ Q-values rather thapromising with respect to rewards (the effect of Boltzmann
dispersing the efforts evenly and inefficiently over theirent exploration), that favors actions that have not been trigeho
state-action space. (the effect ofn(s,a)), and that favors actions that have not
Standard Dyna and Prioritized Sweeping [2], [5] corréseen tried for a while (the effect afi(s, a)). Oncen(s,a)
spond to serial algorithms that first obtain an experiencebecomes very large, the exploration bonus vanishes.
subsequently allow: iterations of value updates based on the
model, then obtain an experience again, etc. In real robots, Transformed reward functions
the execution of actions and the reading out of sensors take
a significant amount of time, during which the RL control Appropriate reward functions can speed up RL significantly,
computer's CPU is usually idle for much of the time. wdecause they may give “encouragement” for imperfect but
adapt Dyna/PS to make it parallel anytimealgorithm: all approximately correct behavior, and thus direct explorato-
idle computer time is used for iterations of value iteratioward promising parts of the state-action space. Howevenyma
according to PS, until the next robot action must be selectadthors have reported problems when using such functions.
or the priority queue is empty. When there is no sufficierfthe main problem is that imperfect behavior is rewarded and
computation time for convergence to the value function thHte system may converge to behavior which obtains a lot of
is optimal given the current model, this parallel anytime Pgward but fails to accomplish the desired task. An example
algorithm focuses computation on the most important stat§-a soccer-playing Robocup robot which was given a small
action pairs, and it always yields a viable value functiofiéward for touching the ball (since possession of the ball is
Algorithm 1 provides pseudocode of parallel anytime PS, §8portant in soccer) and which learned to remain next to the

it used in this paper. ball and “vibrate”, i.e. touching it as often as possible. [3]
However, it is possible to design appropriate reward func-
C. Directed exploration tions and avoid such undesirable and pathological behavior

o . e first step is to design a straightforward reward function
Exploration is an inherent aspect of any RL method th-araich genuinely reflects the goal of the task. For instarifce, i

does not assume an a priori model. Undirected exploratiéﬁ, . . _
which explores evenly around the currently policy, is ofiess t © robot is a soccer-playlng robot, it may get a reward of
efficient than directed exploration, which attempts to «:i]'reIf it scores a goal and-1 if the oppqnenF s_cores a goal.
exploration towards “interesting” parts of the stateacti !N the second step weansformthis original reward func-
space. Directed exploration is especially beneficial incthge 10N t0 make it more informative during learning. The key
of Dyna and PS [8], [2], [5]: with standard, straightforward'dea is that _the optimal pollcy according to the trapsformed
undirected exploration, the system may converge prerﬂyturéeward function must be identical to the one according to the

to suboptimal policies based on an imperfect, incomple?éiginal reward function. This is the case |f and only ifeth
model learned from limited early experience. transformed reward(s, a, s") has the following form [3]:

We use a combination of and variation on two methods
[2], [8], resulting in a directed exploration technique tth&
particularly effective for robot RL. It requires the stoeag
of some extra information for each state-action pair. Usi
the terminology of [8], arexploration bonuss added to the
estimated Q-values, which reflects the added value of gsdect
a particular state-action value for the sake of exploration
and action selection is done based on these Q-values
exploration bonuses:

r(s,a,8") = rorig(s,a,s’) + F(s,a,s") (5)

nwhererm-g(s,a, s') is the original reward and" is a differ-
Ehce of potentials

F(s,a,5') = 7(s') — 9(s) (6)

%ﬁ‘ere@ is a potential functiondefined over states.
This still leaves room for different potential functionsh&
QF(s,a) = Q(s,a) + ex/m(s, a)/n(s,a) (3) design of a particular potential function is problem-degnt.

But for any given problem, various potential functions can
wheree is a constanty(s, a) is the number of time steps sincespeed up learning immensely compared to the original reward
actiona was last tried in state, andn(s,a) is the number function, while guaranteeing that the optimal policy rensai
of times actiona was tried in states at all. If n(s,a) = 0 the same as the one according to the original reward function
it is replaced by a constamt € [0,1). Q" (s,a) is used for [3].

which is mounted in the back. Each sensor provides noisy
estimates of distance to the nearest object, if this obgeletss
than approx. 1m away. For each of the ultrasound sensoss, thi
information is quantized into 3 discrete categories: ndautle
(obstacle> .30 m), obstacle near (obstacte.15 m and< .30

m), and obstacle bump (obstaete.15 m).! Together with the
visual information this leads to a total 8fx 3 x 21 (20 grid
cells + not seeing the target objeet) 189 possible states.

Fig. 1. Fig. a (left). The wheeled mobile robot, equippedhwat standard C. Reward function

fFOig"."egd(r:gﬁ't‘)'.”%;:q’gf;riﬂf;g‘;a?;gh:é'db;r?ﬁé ?ngtt)'a%em;ﬁ;r’ms%r:. The ultrasound sensors are used to detect bumping into

yellow cup, is in sight. Detected target color pixels arddated in blue. The Objects (walls) other than the target object, and this auto-

small yellow cross marks the center of the cluster of targéirgpixels. This matically stops forward or backward motion and leads to a

I e e e S ooy NeGaive reward of-1, but how o avoid bumping must be

discovered by the learning algorithm. Similarly, the wtvand

sensors and visual information are used to automaticatbctle

IV. LEARNING TASK bumping into thztaﬁtget(;)brj]ect, tge %/erlllow cupawhk;]h Iea([istd
a positive reward oft and the end of the episode. The rewar

A. Task and robot discount parametey = .95.

The techniques designed to accelerate RL described abovehis original reward function, which directly reflects the
were investigated by applying them to a real robot’'s RL taskasic goals of the task, is transformed, as described above,
The task is to find a specific object (a yellow coffee cup in oursing a potential function. In this task, the potential fiime
experiment, see figure 1b), to move towards it, and to bundpis a function which increases as the coordinates of the grid
into it, while avoiding bumping into walls. The task is ingg cell in which the detected target object liés,), are closer
by the Robocup task of finding a ball, moving towards it, ang the center of the imager (= 0), meaning that the robot is
kicking it. The robot moves around inside a fenced area (skging the target object more directly, or closer to the diott
figure 3). of the image ¢ = 0), meaning that the robot is closer to the

The robot is a small wheeled mobile robot equipped wittarget object:
ultrasound sensors in the front and the back and a forward

looking standard Camcorder camera (see figure 1a). It has an O(s) = { 6—laf —y if Large.t in view @)
onboard low-level motor controller which implements 6 lbasi 0 otherwise
actions: go forward (approx. 20 cm), go backward (approx. 20 V. EXPERIMENTS

cm), turn left (approx. 20 degrees), turn right (approx. ZR
degrees), turn left and go forward, turn right and go forward"
Which of these actions is to be executed during each iteratio The state and action representations, reward function, and
(taking approx. 0.4 seconds) is determined by the RL Systégarning algorithms described above were tested in sinoulat
running on an offboard computer. Another offboard computBgfore applying them to the real robot. The simulations were
is used for dedicated processing of visual data coming fro@t used to train the controller beforehand and apply an

Smulation experiment

the camera. already trained controller to the real robot. Instead, ih&us
lations were used to systematically compare different oath
B. Sate information in many runs, which would be impossible in the real robot.

The robot's camera images are processed as follows. A siffe used a simple simulation of the continuous world of the
ple color vision algorithm looks for clusters of densely ket "OPOt in its fenced area, with randomly placed robot stgrtin
pixels of certain color (yellow in this case) in the image. IPOSItions, target positions, and several obstacles (seeefig
and only if there is such a cluster, it marks coordinates éf)- Actions were as described above. Limited field of view
the center of this cluster (see figure 1b). This process H&§°) vision and ultrasound sensors were simulated based on
some (difficult to quantify) noise, especially with incrias thg simulated robot’s orientation and its distance to thgeta
distance to the object of interest. A regularly spaced 5 bypiect, obstacles, and walls. _ _
grid divides the entire image into 20 regions. All coordmat USing the state and action representations described above
values marking the presence of the cluster of specific col Systemically investigated the utility of the described e
(the yellow coffee cup) within one grid region are assumdgnsions to the standard RL framework. Starting with stmhda
to correspond to one state. Using this standard, BOXE®-st{-learning, we consecutively add Dyna, Prioritized Swegpi
state aggregation method [1], the continuous state is qpeaht directed exploration, and the transformed reward functiia
into discrete states. L _

.. To avoid damage to the robot and obstacles, we do not wanbiiwt to

Additional state information is prowded by the ultrasc'ungctually bump into obstacles and the target object, whichhg we build in
sensors, one of which is mounted in the front, and one wfs safety margin of 15 cm.

x 10

a
=3
S

fl.:Environment View =[=] - - Q-learning - - Q-learning
Dyna Dyna
- 450 = --PS
] — PS+DE 251 — PS+DE
400 % PS+DE+TR —= PS+DE+TR

W
a
S

W
S
S

250 1.5F

200

Average number of actions to target
Total number of value updates

0.5F

0 0.5 1 15 2 25 0 0.5 1 15 2 25
Number of iterations Number of iterations

Fig. 2. Fig. a (left). Screenshot of the simulated robot @adenvironment. The simulated robot is close to and orietdagrds the round, yellow target
object. Also shown are square obstacles. Fig. b (middled. average number of actions needed to reach the target,doiimastigated method, as a function
of state-action-reward-next state iterations. See taxekplanation. Fig. c (right). The cumulative number of walupdates for each investigated method, as
a function of state-action-reward-next state iteratiddse text for explanation.

measure performance for each variation in terms of requirgdrations to learn the task. This is probably because 2a0&v
numbers of state-action-reward-next state iterationsramd- updates between each state-action-reward-next stasdidter
bers of value updates. was sufficient for Dyna with standard value iteration. Rrior
The Q-learning method used the standard update rule ted Sweeping with directed exploratioR§+DE), however,
eq. 2. We tested learning rates in the range0.1,0.8], did significantly reduce the number of iterations needed to
and used the best value for this task,= 0.3. The Dyna learnthe task. This is the case because the directed etipfora

method used standard value iteration. The model, i.e. tite stnethod allows the system to more systematically explore the
transition function and reward function, was learned basétfte-action space, such that the target object is enaeghte
on maximum likelihood, i.e. by counting and averaging oveéooner. Adding the transformed reward function, finallgl le
experienced state transitions and rewards. After eack-stdf by far the lowest number of iterations needed to learn the
action-reward-next state iteration, a maximum of 2000 ealtidask PS+DE+TH. Now just seeing the target object leads to
updates were allowed for value iteration on the current rhodgewards, such that value function learning can start ezatie

Our Prioritized Sweeping method was similarly allowed 200€ robot explores the state-action space even more effigien
value updates after each state-action-reward-next state iguided by the task’s requirements.

ation, and priority thresholdd = .0001. Next, Prioritized Figure 2c shows total, cumulative numbers of value updates
Sweeping was extended with the directed exploration methfsd each of the methods, again as a function of state-action-
described above, using exploration parameters .02 and reward-next state iterations. Standard Q-learning males a
v = .1. Finally, the transformed reward function was added #8any value updates as state-action-reward-next stateides.
described above. The Dyna method, in contrast, made many millions of value

Figure 2b shows learning performance as a function of statd2dates. With larger state-action spaces or less time betwe
action-reward-next state iterations for each of the methodt@te-action-reward-next state iterations, that woulétertais
averaged over 10 runs. Learning performance is measured?¥8@ method with standard value iteration impractical. All
the average number of actions it takes the robot to bump irft§ioritized Sweeping variations required significantlyvée

the target object (the system always learned to avoid bugnpi¥flue updates, so they scale much better with larger prablem
into walls/obstacles as well). and stringent r.eal-t|me _requwements. The versions Wlt-.h di
The Q-learning method needed the largest number of iter(ra_cted exploration and with transformed rewards madetyjigh
ations to reach good performance. The Dyna method needed © value updates, bgcause they encounter more rewards or
only about one third of Q-learning’s number of iterations tce)ncounter rewards earlier.

learn the task well. This is in large part due to the fact that i

contrast with Q-learning, Dyna can do a lotlatent learning B- Real robot experiment

i.e. learning about the characteristics of the environment Based on the results of the simulations, the complete RL
regardless of whether any target rewards are obtained. OBg8tem with Prioritized Sweeping, directed explorationd a
Dyna experiences the target reward, all this latent le@rigansformed reward function was implemented in the real
allows it to estimate a reasonable policy for the whole stagghot. The value function/policy learned in simulation wer
space almost immediately. not used, the real robot learned from scratch. As described
The Prioritized Sweeping method?$) did not improve above, parallel anytime PS was used, using all idle time of
much on the plain Dyna method in terms of number dhe RL computer while executing actions and sensing. The

Fig. 3. Snapshots (ordered like text) of robot moving aroimside the fenced area containing the target object, awedlgp. Top row: after approximately
20 minutes of learning, the robot searches for the targetoolgffectively, and approaches it directly. Bottom rowe tobot generalizes successfully to novel
starting positions and target object positions.

priority thresholdd = .0001. The directed exploration method Possible further improvements to the methods explored
used exploration parameters= .02 andv = .1. in this paper include more sophisticated generalizatich-te

This combination of techniques allowed the robot to leamiques [7], [6], [4] and techniques for easily adding more
the task in around 20 minutes of learning. In this periodrghebackground knowledge [7]. In general, successful apptinat
was time for approximately 4000 real state-action-rewzegt of RL to robots will, as in this paper, most likely require a
state experiences. But sufficient learning of the task requi combination of techniques that work well together.
around a million of value updates in the background using our
anytime PS algorithm.

Figure 3 shows a number of snapshots of the robot duringThe work described in this paper was done while the first
its task executioR.The robot learns to, first of all, successfullyauthor was at IDSIA, and it was supported by the Swiss Center
avoid bumping into walls (or obstacles placed in the robotf@" Electronics and Microtechnology (CSEM) and EU project
way), excluding occasional bumping due to exploration. THe?6-511 931.
rgbot’s strategy for _finding t_he t_arget o_bjlect is to usually REFERENCES
simply turn around in one direction until it sees the target o _) o
object, and to occasionally move forward or backward (not] 5('Jn,\t/ll’l(;:|'.’“ﬁl %rfjeRé ap‘r;dcmﬂize& e%ict)éz%cﬁ}zeemzw;:gén@gﬁ
that the robot continues to use its exploration algorithfimjs 137-152, Edinburgh, 1968. Oliver and Boyd.
may be likened to “searching” behavior. Once the robot sedzgl A. Moore and C. Atkeson_. Prioritiz_ed sweeping: Reinfarent learning
the target object, it approaches the target directly, mpkinall @ with less data and less tim&achine Learning13:103-130, 1993.

) > S .] A. Y. Ng, D. Harada, and S. Russell. Policy invariance emceward
corrections to keep the target in the center of its field ofwie transformations: theory and application to reward shapingProc. 16th

ACKNOWLEDGMENTS

until its sensors indicate it has bumped into the target. " International Conf. on Maszjine Leaénénygges 278-287, 191%@
. - o 4] A. Y. Ng, H. J. Kim, M. Jordan, and S. Sastry. Autonomou ter
Importantly, experience with only a limited number of flight via reinforcement learning. |Mdvances in Neural Information

different robot starting positions and target object posg Processing Systems 18004,
allowed the robot to generalize its behavior successfuly t[5] J. Peng and R. J. Williams. Efficient learning and plagninithin the

th bot starti iti dt t obiect iti dyna framework.Adaptive Behaviarl (4):437-454, 1993.
other robot starting positions and target object posiions [6] J. Schmidhuber. Curious model-building control syséein Proceedings

of the International Joint Conference on Neural Networkisg&pore
VI. DISCUSSION volume 2, pages 1458-1463. IEEE press, 1991.
. [71 W. D. Smart and L. P. Kaelbling. Practical reinforcemdearning
The combination of techniques investigated in this study = in continuous spaces. Ifroc. 17th International Conf. on Machine

allowed a real robot to do quasi-online reinforcement lesyn Learning pages 903-910. Morgan Kaufmann, San Francisco, CA, 2000.

. . R. S. Sutton. Integrated architectures for learningnping, and reacting
from scratch. From an outside perspective the robot learndd based on approximating dynamic programming. Rroc. 7th ICML,

a nontrivial task online and in real time. The robot learned pages 216-224, 1990.
very efficiently, both in term of required environment irger [9] R. S. Sutton and A. G. BartoReinforcement learning: An introduction

. . . MIT Press, Cambridge, MA, 1998.
tions and in terms of computation, compared to standard Iﬁlf)] C. J. C. H. Watkins. Learning from delayed rewards PhD thesis,

techniques. Cambridge University, 1989.

2http://www.science.uva.nl/"bram/RobotCup.htm has
videos of the robot’s behavior, both during the initial €agf learning and
after sufficient learning.

