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PART 2 - Management Overview

Document Control

This document is a co-production of all the partners mentioned above. Contributions from all partners where collected during March-April 2007 (initiated on March 1, 2007). This document includes all descriptions received until May 1. The individual parts are marked with the contributing partner(s).

Executive Summary

This document provides an overview of all the developed systems, implementations and evaluations relevant to Workpackage 3: Attention, monitoring and control. Much progress has been made in advancing the state of the art in these different areas. In particular, the work within the workpackage has lead to a better understanding for the problems that must be addressed by a system capable of attention, monitoring and control. Several new algorithms have been developed that can make prediction in complex situation and are thus good candidates for the predictive component of an anticipatory system. A number of robot set-ups have also been designed which have been used as test beds for the algorithms that have been developed. 

There has been much transfer of information and knowledge between the partners which is to a large extent the reason for the advancements that have been made. The progress made is also shown by the number of publication have been produced and several more are in the process of being written. In addition, much work has been initiated which is not reported here, which will ultimately serve to complete the scenarios for workpackage 3 before the end of the project.

PART 3 - Deliverable Content

1. Introduction

Deliverable 3.1 made an overview of a number of systems for attention, monitoring and control. With this as a background, we have made a number of advancements. This includes (1) new algorithms for prediction of target motions, (2) new learning method that can be used for attentional systems, (3) a number of robot implementations of the new theories and methods. This includes experiments with individual robots (e.g. in the game room scenario) and experiment with multiple robots (e.g. the guards and thieves scenario).

2. Advancements in Attention, Monitoring and Control

2.1 Model architectures (OFAI)

First Scenario - Immobile robot

We would like to present the ideas and results for the following scenario: A robot observes repeatedly a ball rolling behind a wall. From time to time an obstacle is placed behind the wall and the ball will be reflected. The first task of the robot is to recognize that the ball usually will reappear at the other end of the wall. In the case that the ball is reflected, we investigated two scenarios. The first one assumes that the reflection is accompanied by an acoustic signal, which shall be used as a sign that the ball will reappear at the same end of the wall, after which it has vanished. The second scenario supposes that the signal is not given or that the robot has no audio sensors, and the robot shall recognize when the ball is late at the other end and shall conclude that the ball might have been reflected.

We start with the assumption that the robot does not move and that his view cone remains the same during the whole experiment. The ball rolls behind the wall with different velocities. During a smaller percentage of the trials an obstacle is placed so that the ball will be reflected. 

Coding

To apply the algorithms, we need to discretize the observed image in the following way. The view cone is horizontally partitioned in several smaller sectors, and we assign to each sector one of the values 

0:
 if nothing special can be observed in this sector

1:
 if the whole sector is occupied by the wall

2:
 if parts of the ball can be observed in this sector

The sectors do not necessarily need to cover the same angle. In our experiments, we used angles such that the rays would cut pieces of equal lengths out of a line parallel to the wall. 

Another sensor (only available in the first scenario) records the possible occurrence of an acoustic signal in the case that the ball is reflected.  The figure illustrates, how the observed scenario is translated into a discrete valued vector. The acoustic signal is added as an additional element with 3: acoustic signal heard   or  0: no acoustic signal


[image: image3]
In this example, the 12 sectors and the sound signal (missing for the given situation!) are coded as [0 2 2 0 1 1 1 1 1 0 0 0 0].

If we record the robot's observation at discrete time steps, we get a sequence of vectors:


[image: image4]
The figure shows the possible states of a run, for which the ball was reflected at the invisible obstacle (13) , indicated by the acoustic signal in the 13th column.

Even, if we vary the velocity of the ball, the number of possible situations remains the same. The next figure shows the possible 11 states for our first scenario. 
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The already mentioned run could be expressed as  1 - 1 - 1 - 1 - 2 – 3 – 4 – 5 – 6 – 1 – 1 -1 – 11 – 1 – 1 – 6 – 5 – 4 – 3 – 2 – 1 – 1 – 1 - 1 

We have therefore coded a run as a discrete sequence of views.

Learning with variable memory length

Suppose that we place the obstacle behind the wall with a probability p<0.5 and therefore the ball more often passes the wall than it is being reflected. If the robot is observing a ball approaching the wall from the left, we would like to have the behaviour that in both scenarios, with or without acoustic signal, the robot should forecast that the ball will pass the wall and will reappear at the other end.

The differences between the two scenarios become clear, if we proceed in time. For the cases without obstacle, the two approaches are indistinguishable. If a acoustic signal is given, indicating the reflection, the robot should learn to switch its forecast to "The ball will roll back to the left side". In the second scenario the acoustic signal is not given and the robot must learn from experience, when to expect the ball at the right end and to switch the opinion, if the ball is "late".

We would like to use forecasts that are built on the history of the sequences as introduced in the last section. Before we proceed, we explain, why different situations require different lengths of memory to make the correct decision. If we observe a ball running from the 1st sector to the 2nd sector, we could already conclude that it will eventually arrive at the 3rd sector and the needed memory has a depth of only 2. But if the ball is actually behind the wall we need a memory that must be decisively longer, at least longer than the maximum time needed to reappear. 

In this setting, knowing the last two or three states is usually sufficient to predict the next state without error. The problem is to distinguish between the cases "A) The ball has not arrived yet.", "B) The ball has already left the visual cone.", "C) The ball is now behind the wall and will reach the right end." and  "D) The ball is now behind the wall and will reach the left end."

It is easy to see that we need additional constraints to distinguish between the cases A and B.  If we observe the scenery after the ball has passed (Case B), the needed memory to remember that we have already seen the ball increases linearly with time. The simple solution is just to start recordings one step before the ball enters from the left and stop them after the ball has left the scenery, either at the right end or at the left end. 
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As a simple Markov model with fixed memory length is not well suited for long memory lengths due to the exponential growth of possible branches, we used the Variable Length Markov Models (VLMM) of Ron, Singer and Tishby (1994, 1996). We tried also the Prediction Fractal Machines mentioned in Deliverable 4.1 (see also the articles of Tino and Dorffner), which map the sequences into a vector space, such that similar sequences will be mapped onto neighboring points. The points are clustered, e.g. with K-means, and one-step predictions are based on the average behaviour of sequences belonging to the same cluster.

Computer Simulations

We generated a training set with 500 sequences, the random velocities were uniformly distributed between 0.8 and 1.2 sectors per second, and the obstacle appears with a probability of p=0.2. We present here the more difficult case without acoustic signal, when the obstacle is hit.

The mean classification error of the one step-forecast on a test set with 500 sequences is given in the following table. We used 100 repetitions to calculate the mean error. Please notice that in the case of a wrong one step forecast the edge at which the ball will reappear can still be correctly forecasted.

	Algorithm
	Mean Error
	Remarks

	VLMM
	8.4%
	effective depth=8, 111 leaves

	PFM
	13.9%
	31 eff. cluster centers (nom. 50), max. depth=10

	PFM
	11.1%
	47 eff. cluster centers (nom. 100), max. depth=10

	PFM
	9.7%
	55 eff. cluster centers (nom. 153), max. depth=10

	PFM
	9.9%
	59 eff. cluster centers (nom. 166), max. depth=12


The k-means algorithm to calculate the clusters removed empty clusters, therefore the number of effective clusters was in average smaller than the intended number. The mean error of the VLMM was slightly smaller than the result of the best PFM algorithm, but the number of leaves (=rules) was also twice as high in comparison to the PFM algorithm.

In a second experiment with a training set with 1000 runs, random velocities between 0.8 and 1.2, varying ball sizes (0.5-2.5 units) and also varying wall lengths between 5 and 7 units long, the obstacle appears with p=0.2, but can be everywhere behind the wall, we get 76 different states (instead of 11). The results can be summarized as 

	Algorithm
	Mean Error
	Remarks

	VLMM
	18.8%
	1317 leaves, c=0.03 (c is a parameter to control the  depth of the tree)

	VLMM
	19.4%
	648 leaves, c=0.10

	VLMM
	21.3%
	351 leaves, c=0.20

	PFM
	42.5%
	46 eff. cluster centers (nom. 50), max. depth=10

	PFM
	26,0%
	163 eff. cluster centers (nom. 100), max. depth=10

	PFM
	22.8%
	286 eff. cluster centers (nom. 400), max. depth=10

	PFM
	20.0%
	477 eff. cluster centers (nom. 800), max. depth=10

	PFM
	19.6%
	582 eff. cluster centers (nom. 1000), max. depth=10


For comparable sizes of clusters (PFM) and leaves (VLMM), the two algorithms show similar behavior. One possible disadvantage is visible: both algorithms extract many rules from a set of 1000 runs. VLMM  best error on the test set is achieved, if the large number of 1317 rules is generated. Each rule of e.g. VLMM can be seen as “If the tail of the observed sequence is most similar to the given partial sequence, then the next state should be forecasted with ...”. 
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The figures show that the algorithm can learn to generate plausible forecasts. Here, the multiple step forecast is generated by repeatedly adding the single step forecast to the observed sequence. The 1st figure shows that usually the prediction “The ball will appear at the right edge of the wall” is given, simply because it occurs more often (80% of all cases). But after the ball did not appear, when it was expected, the expectation is immediately switched and the ball is now assumed to reappear at the left edge.

The already mentioned scenario with acoustic signal is easier to solve as the acoustic signal alone is sufficient to switch expectations, and the longer history is only needed to estimate the time span after which the ball will reappear.

To summarize the results, we conclude that both algorithms (VLMM and PFM) are able to learn the behavior under the assumption that a sufficient number of runs is presented. Generalization in our framework means that the algorithms are able to learn to ignore irrelevant old parts of the sequence. But for example the algorithms do not convince if they are used to generalize to unknown wall positions or unknown ball sizes. One possible solution is to replace each unknown state in an observed sequence by the nearest state, whereby the nearest state is calculated via some measure using the sector views.

Real life experiments

We tested whether the approach with discrete sequences is usable if we work with real data. We performed 54 runs for the training set, for 12 of them an obstacle was placed at the right edge of the wall, for the other 42 runs no obstacle was present. A test set consisted of 5 runs with obstacles and 3 runs without. As the ball was pushed per hand, a variety of different runs was generated. We used the VLMM approach for the construction of the model.

The camera image (see figure) was used to determine ball and wall position, whereby the colour of objects was used for the segmentation. Finally the observed ball and wall positions were used to generate a discretized version of the view (bottom right). The number of segments depends on the number of available runs and should be sufficiently high to allow an estimation of the velocity of the ball. Too many segments (in relation to the number of runs) lead to inferior results. 


[image: image9]
After 3-4 steps the fitted model predicted for each example of the test set that the ball would reappear at the right edge of the wall (see first figure of the following). In those 5 cases where the ball was reflected, the model switched its expectation before the ball reappeared at the left edge (see 2nd and 3rd figure).
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Comparison with LSTM

One drawback of the mentioned approach is the restricted ability to generalize the prediction to unknown views (especially different ball size or deplaced wall). In cooperation with IDSIA we investigated if the LSTM algorithm can cope with problems of this kind.

In a first attempt each state of the input sequence was coded as a binary vector, with as many elements as states are available. Here it was assumed that all possible states are already known. The output vector had the same dimension and it is interpreted as a “probability” vector (not in a strict mathematical sense) for the next state.


[image: image13]
For example state 1 was coded as [1 0 0 0 0 0 0 0 0 0] , state 2 as [0 1 0 0 0 0 0 0 0  0] and finally state 10 as [0 0 0 0 0 0 0 0 0 1].

As an example, the sequence 

1  1  1  1  3  4  5  6  1  1  1  1  1  6  4  3  2  1  1  1

was generated, which means that here the ball was reflected. The interesting part is when the ball is invisible for 5 time steps when being behind the wall. The fitted VLMM model predictions for the interesting part are given in the following table, which gives the estimated probabilities for the next state.

	observed sequence
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10

	...
	
	
	
	
	
	
	
	
	
	

	6
	0.92
	0
	0
	0
	0
	0.08
	0
	0
	0
	0

	1
	1
	0
	0
	0
	0
	0
	0
	0
	0
	0

	1
	1
	0
	0
	0
	0
	0
	0
	0
	0
	0

	1
	0.85
	0
	0
	0
	0
	0
	0.15
	0
	0
	0

	1
	0.36
	0
	0
	0
	0
	0
	0.61
	0.03
	0
	0

	1
	0.44
	0
	0
	0
	0
	0.14
	0.42
	0
	0
	0


After the ball has vanished behind the wall, the forecasts assume that during the next steps mostly only a wall will be observed. After the wall has been observed three times the estimated probability is increased that the ball will appear at the right edge (state 6 or state 7). But after 5 steps only seeing the wall the probability increases again to see another wall (which means that it is more likely that the ball has returned).

The LSTM approach has generated the following output vectors:

	observed sequence
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10

	...
	
	
	
	
	
	
	
	
	
	

	6
	0.97
	0.00
	0.00
	0.00
	0.01
	0.08
	0.00
	0.00
	0.00
	0.00

	1
	0.99
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00

	1
	0.89
	0.00
	0.00
	0.00
	0.00
	0.00
	0.16
	0.00
	0.00
	0.00

	1
	0.64
	0.00
	0.00
	0.00
	0.00
	0.00
	0.41
	0.00
	0.00
	0.00

	1
	0.22
	0.00
	0.01
	0.00
	0.00
	0.00
	0.71
	0.00
	0.00
	0.00

	1
	0.33
	0.01
	0.01
	0.00
	0.00
	0.00
	0.12
	0.00
	0.00
	0.00


We have therefore qualitatively the same behaviour that after a number of walls the probability increases again to see another wall. After 4 walls it is most likely to see the ball appearing at the right edge, but after 5 walls the highest “probability” is to see only the wall again.

Ongoing work: Motion of the robot 

So far the embodiment of the robot was of lesser interest. We started to investigate whether an algorithm either based on Markov decision processes or on LSTM is capable to cope with movements. In a more complicated scenario the robot is placed before a wall, with such a distance that the whole wall is visible, then a balls rolls from the left behind the wall and is sometimes reflected at an obstacle behind the wall. The difference is now that the robot moves and therefore the position of the ball (and also the wall) will differ from frame to frame and they depend on the movements of the robot.

Although it is still possible to work with discrete sequences of states, we believe that one of the following codings might have better generalization properties:

Coding 1

The robot’s optical axis is parallel to the floor and only the parts of the observed image with the same height as the eyes are used for the analyis. We can imagine a narrow horizontal stripe, from which the necessary data is calculated. Ob course we assume that the target is visible in this height. The left border of the “viewing stripe” is assigned to -1 and the right to +1. The following data is recorded for each step:

1. left border of the ball (number between  -1 and +1) 

2. right border of the ball (number between  -1 and +1) 

3: left edge of the ball (number between  -1 and +1) 

4. right edge of the ball (number between  -1 and +1) 

5. Action 0/1:  the robot makes one step to the left 

6. Action 0/1:  the robot makes one step straight ahead

7. Action 0/1:  the robot makes one step to the right

If an object (ball or wall) is not visible, a missing value is used.

Coding 2

Alternatively, the “viewing stripe” is partitioned into k sectors. For each sector we determine, how many percent are occupied by the ball or the wall. Additionally we record the actions of the robot. We use then the variables b1,..., bk for the ball, w1,...wk for the wall and the actions of the robot as in Coding 1.

Approach

We assume that a LSTM net might be able to learn with sequences of vectors (Coding 1 or Coding 2). The figure shows the world view of the scenario (upper left), the simulated view of the robot (bottom) and the data which is actually fed to the algorithms (upper right). Here we have used 12 sectors, the upper histogram shows the position of the wall, the lower histogram the position of the ball and the arrow indicates the next action of the robot.

Fig. I
[image: image14]
Fig II
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Fig III
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We will investigate in cooperation with IDSIA, whether LSTM or any other algorithm is capable to forecast the percentage vectors for wall and ball. So far, we assume that the actions of the robot are given.

2.2 A Developmental Approach to Hierarchical “Object” Recognition With Recurrent Neural (UW)

UW and IDSIA are working on a hierarchical neural network implementation. The resulting system will be applied to the tracking tasks, proposed by LUND and others in the MindRACES pro ject. The aim is to build a hierarchical architecture that learns to analyze dynamic scenes identifying moving ob jects in the scene, distinguishing different moving ob jects as well as predicting the behavior of these ob jects. Generally, the architecture is intended to consist of interactive, hierarchical layers in which each layer either summarizes a lower-layer property disjunctively, consequently enlarging the receptive field representation of this property, or identifies a particular property conjunctively, consequently identifying a particular property (such as flow direction) in the particular receptive field (Riesenhuber & Poggio, 1999; Giese & Poggio, 2003; Poggio & Bizzi, 2004). To do so, the optical flow in the scene will be analyzed by recurrent neural network structures. On the first layer, simple receptive fields will be distributed uniformly over the visual field. In a later stage, this uniform distribution might also be learned or distributed in a foveal-simulation distribution. The second 

layer is intended to analyze the activity flow of the first layer by multiplicative, sigma-pi like neurons (Hochreiter & Schmidhuber, 1997; Taylor, Hartley, & Taylor, 2005), which encode the predicted shift accding to the current optical flow. The sigma-pi like neurons may be initially shaped by motor activity information or saccadic eye movements. This predictive activity flow will be down-pro jected to the first layer merging the predictive with the actual sensorial information with Kalman-filtering-based techniques. 


[image: image17]
Figure 2.2.1: Visual flow will be analyzed interactively dependent on current motor activity information.

Figure 2.2.1 sketches the lower layers of the network structure. The third and fourth layer then will be structured by clustering neurons and LSTM-like units, which cluster the visual flow with position-independent clusters (Weber, 2001; Weber & Wermter, 2003; Weber, Wermter, & Elshaw, 2006), and predict the behavior of those clusters. These layers should be able to predict the behavior of different moving ob jects (at first one ob ject, such as a simulated ball). The prediction will be down-projected modifying the visual-flow input in the second-layer, based on Kalman-filtering principles (Kalman, 1960; Rao & Ballard, 1997, 1999; Haykin, 2002). The intention of the usage of LSTM (Hochreiter & Schmidhuber, 1997; Gers, Schmidhuber, & Cummins, 2000; Perez-Ortiz, Gers, Eck, & Schmidhuber, 2003) units is to continue the simulation of the ball (or train, etc.) when the ball is temporarily hidden. To do so successfully, additional information may be provided to the LSTM layer indicating the presence of view-obstructing obstacles, reflecting obstacles, etc. The network structure is intended to purely learn from experience. That is, the layers will be successively self-structured by an appropriately staged learning scheme that shapes the hierarchical layers successively. Thus, first optical flow predictions will be learned. Second, flow-information will be used as a teaching signal for the clustering-system on the third layer. Finally, the information on the third layer will be used to improve the predictions on the second and first layer, according to Kalman-filtering-based principles. 

To realize this network structure, we will work with predictively connected, hierarchical distributed neural layers that learn sequential patterns (Hawkins & George, 2006). As suggested in (Zimmermann, Grothmann, Sch ̈afer, & Tietz, 2005), we will sparsely connect these network structures to balance memory requirements and focus the representational capabilities. In fact, we will use the principle of convolution networks with weight sharing (Lecun, Bottou, Bengio, & Haffner, 1998), which evolve cortical column structures that are replicated in multiple columns over the visual space. The structure inside the column(s) will be designed to be able to predict optical flow according to current top-down influence, or, similarly, observe optical flow and send the corresponding signals to the upper layer neurons. 

Thus, neural units will model activity of the layer below, given the past (Zimmermann et al., 2005). They should be able to do this autonomously (in the absence of further inputs), simply by the recurrent structure. On top of this, we intend to learn how the internal state of a unit changes with its input, which comprises the activity stemming from (1) the receptive field below, (2) the self-recurrent activity prediction, and (3) the predictions stemming from the higher level region. These pieces of information will be combined with information theoretic methods estimating the reliability of each piece of information independently. Notions of surprise will be utilized to have the upper layers learn irregular behavior, or rather, behavioral changes of the predicted stimuli. That is, if the ball bounces against a wall or is hidden behind an obstacle, the upper layer will predict the information change in the lower layer. Otherwise, the upper layer does predict no change, that is, no modulation of the lower layer activity propagation. Thus, each neuron will not only compute its current activity propagation but also the confidence in its activity. 

Learning will generally be done with restricted backpropagation techniques. As in LSTM, information will not be passed through gating units to prevent instabilities during learning. However, it will be important that the learning algorithm does not learn only single values but confidence values, in terms of probability densities, to be able to combine the available bits of information appropriately, dependent on their reliability estimates. 

Currently, a preliminary implementation is available that learns to predict the optical flow in moving scenes. Once trained, the system is able to derive local movement information out of the scenes. This is simply done by watching first a camera moving over a scene. Weight sharing is used to learn a prediction of the activity of a point considering surrounding activity information. After training this system for a while, the mechanism is reversed, probabilistically deriving movement information out of the visual input alone. The mechanism can deduce local movement information, basically detecting object-like movement through a scene. The next stage will be to add a successive layer structure that clusters the movement properties location independently deducing object structure information. Finally, an LSTM-like network will be applied on top in order to be able to represent object-permanence and typical object behavior such as bouncing properties, etc. To achieve this successfully, we will first evaluate the classification capabilities of the clustering layer. That is, its capabilities of distinguishing different object shapes. Once such distinctions work successfully, we will then add another LSTM-like layer that can encode the movement properties as well as object-permanence, given temporally unavailable visual information. 

2.3 A Learning Attention System (LUCS)

Based on the overview of different attention models in deliverable D3.1, LUCS has formulated a new model of a learning saliency map which allows standard reinforcement learning techniques to be used in a number of attention tasks (Balkenius et al, 2007). They are all based on a novel and compact formulation of a saliency map, which allows may types of visual information to be combined in a coherent way. In the current implementation feature based and spatial attention is combined in a seamless way.

Feature Based Attention

A saliency map S(x,y) is defined as a linear combination of a number of feature maps Fm convolved with a smoothing function G:
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The feature maps Fm can be the result of simple visual operators such as line and edge detectors but can also be generated by more complex image processing algorithms. The smoothing function G is typically a gaussian or a box filter.

The central idea is that the saliency map S can be seen as an approximation of a value function for reinforcement learning. S(x, y) is thus an estimation of the reinforcement that will be received if location  <x, y> is attended. Unlike the standard action-value function in reinforcement learning, there is no state in this formulation. Instead, each location in the image corresponds to an individual action that directs attention to that location. Since all different sources of attentional signals all eventually lead to attention that is spatially focused, this provides a common language for all such processes. 

The next location to attend is selected by generating a probability density function over the image from the salience map. For example, the location can be selected using the Boltzmann distribution


[image: image19]
where T is a temperature parameter that determines how random the selection should be.

When the location has been selected in the image, a gradient ascend is performed on S to find the closest local maximum in the saliency map. This partitions the position space into a finite number of regions, each corresponding to a local maximum of S. Although not strictly necessary, this makes the selected locations more stable which improves visual processing in subsequent processing steps.

Alternatively, an epsilon-greedy method can be used where the maximum location is selected except at exploratory trials, which occur with probability 1-epsilon.

At each time step, the error in the value function is calculated as
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where tau is the delay between the fixation of a stimulus and the time when the corresponding reinforcement is received. This delay is necessary since there will typically be a substantial delay between the time when the salience map selects a particular location and the time when reinforcement is received which may only occur after a slow object recognition phase. The coefficients thetam are updated to reflect the actual reinforcement received and the value at the attended location using the learning rule


[image: image21]
where alpha is the learning rate.

Spatial Attention

Attention can also be direct to or away from a particular spatial location in the image. In this case, it is necessary to learn a separate value for each image location. Assuming there is some spatial continuity in the locations where targets appear it is advantageous to generalize to locations around the learned locations. We have used a value estimation where normalized convolution is used to smooth the learned spatial attention map which results in values for each location in the image even if only a few have been trained.


[image: image22]
G is a smoothing kernel and a is an applicability function that represents whether there is any training data available at each location. 

The values phi represent the learned spatial attention at each location and are updated similarly to the feature based attention parameters:
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The parameter alpha is the learning rate and beta is a decay factor. The applicability function a(x,y) = 1 if phi(x,y) ≠ 0 and 0 otherwise. This results in a general model of both spatial habituation and spatial priming. Contextual effects can be modeled 

Anticipatory Attention

The central problem of anticipatory attention is that feed back is delayed (Balkenius & Johansson, 2007). This problem also occurs when a moving object has to be manipulated in some way. Consider a system that attempts to predict the position of a target object based on a sequence of its previous positions. Such a system should learn a function from a number of observed positions p(t-n),... p(t-1) to the estimated position p*(t) at time t. Any of a number of learning algorithms could learn such a function by minimizing the prediction error e(t) = p(t)-p*(t). The learned function constitutes an anticipatory model of the target motion.

We now add the constraint that the perception of the target, including its localization, takes tau time units. In this case the problem translates to estimating  p*(t) from p(t-n),...p(t-tau), since the rest of the sequence is not yet available. In addition, this means that the system only has access to the prediction error e(t) after tau additional time steps, that is, learning has to be set off until the error can be calculated and the estimate of p*(t) has to be remembered until time t+tau when the actual target location p(t) becomes available.

The important point here is that a system of this kind will never have access to the current position of the target until after a delay. Any action that is directed toward the current target position will thus have to depend on the predicted location rather than the actual one. This is further complicated by the fact that any action directed toward the predicted location will also take some time to execute. For example, if an action is performed with constant reaction time ho, an action directed at p*(t) at time t will miss the target, since once the action has been performed the target will be at position p(t+rho). Consequently, the system needs to anticipate the target position p*(t+rho) already at time t when the action is initiated.

In summary, the system needs to keep track of the target at three different times. The first consists of the currently observed set of positions p(t-n),...p(t-tau$ that can be called the perceived now. The second is the anticipated now, that is, p*(t). This is the actual position where the target currently is, but this is not yet accessible. Finally, any action must be controlled by the anticipated future, that is, p*(t+rho).

Although this looks like a very complicated way to handle time, unless the delays tau and rho are negligible, the use of some form of prediction is unavoidable. The delays in the human brain are long enough to necessitate anticipatory models and this has important consequences for how we learn to pursue a moving object with our eyes. The central problem for anticipatory attention is to learn the mapping

p*(t) =  f(p(t-n),...p(t-tau) | θ),

where θ is a set of parameters. With an appropriate model f, a system will be able to anticipate the target location p* and direct its attention or actions toward it. Any of a number of learning mechanisms can be used to learn f. We have found that in many cases, such as in tracking a regularly moving object, a linear association trained with a gradient descent method is sufficient although other methods may give faster convergence and better noise sensitivity.

For example, in Balkenius and Johansson (2007) we used the following associator
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with the learning rule
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to learn the motion of a target. This method is also able to learn the motion of toy fishes in a fishing game.

Fishing with anticipatory attention

The learning attention system can learn to catch fished in a toy fishing game (Fig. 2.3.1). The attention system learns to predict the location of the target using color tracking in combination with the associator describes above. The implemented system (see below) has  a delay of approximately 500 ms from camera image to motor control. The 3 dof arm moves in a single plane only and its kinematics is controlled by a direct inverse model that was analytically derived. We are thus no looking at the eye-hand coordination. The fishing game is located at a fixed height relative to the camera which makes the whole task essentially two-dimensional.
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Figure 2.3.1. Schematic description of the fishing game.

Tracking a marble with anticipatory attention

By replacing the coefficients c in the predictor above with a context sensitive weight

ci = wi ∏j (1-uj Cj),

where Cj codes for the presence of context j, different predictions can be learned for different context. To track a marble that is rolling and falling down a marble run, at least three models need to be learned (Figure 2.3.2). One for the rolling, one of free fall, and one for the bounce event.
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Figure 2.3.2 The marble run scenario.

For a simple one dimensional case with only fall and bounce context, this results in the following two models.
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for the falling context and


[image: image29]
for the bounce context. The value g represents the learned gravitational constant and e is the learned elasticity of the bounce. We are currently comparing this to the performance of a learned state based model with position and velocity which results in the following two models,
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and
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The first type of model has the advantage that it does not contain any information about the specific task that is learned. On the other hand, the state based models have the advantage that it can be used to directly anticipate where the target will be at any time in the future as long as the context is not changed. In this case the future stat s is given by
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where M is the model for the current context.

2.4 Guards and Thieves (LUCS)

As a test of how a robot can control its own behavior depending on the anticipated behavior of another robot,  a hiding scenario was implemented using the second multi-robot set-up at LUCS (see below). There were two robot thieves and one guard that patrolled the environment in a regular fashion. The task for the thieves was to hide from the robot guard.

In the simplest case, the hiding robots selects a location where they cannot be seen from the current location of the patrolling robot. 
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Figure 2.4.1. Left. Geometric characterization of the invisible regions for a guard at the location with a dot. The black lines are walls. Right. The invisible regions when the guars is anticipated to move along the black line.

If H(p) is the set of points that function as hiding places when the patrolling robot is at place p, the suitable hiding places when the patrolling robot is anticipated to move along the path P is the set

H(P) =  ∩p∈P H(p).

It follows that a robot can move between any two points in a connected subset of H(p) without being seen by the guard. 

If the start and goal for the thieves are not in the same connected subset of H(P), the situation becomes more complicated. In this case it is necessary to construct a path x(t) from the start to the goal such that at each time, the following condition must be fulfilled:

∀t x(t) ∈ H(P(t)),

that is, the position of the robot thief x(t) at time t must be within a region which is invisible to the guard at that time.

By using this criteria to control the behavior of the robots it is possible to make them avoid being seen by the guard. The figure below shows a snapshot from a demo movie where two robot thieves hide from a guard. As the guard moves, the thieves will change their position to remain invisible.

[image: image1]Figure 2.4.2. Two robot thieves are hiding from the patrolling robot guard. 

2.5 Fovea Based Supervised and Unsupervised Object Recognition, Localization and Prediction (IDSIA)

Fovea based visual input for object recognition and localization tasks have advantages and disadvantages in relation to methods which are using the full visual information: the main advantage is the reduction of the input dimensionality while the resolution of the visual input is preserved in the fovea’s center. The main disadvantage is that some fully observable tasks with full visual input become partially observable with fovea based input. We are investigating some fovea based visual tasks in a simulation and with a real robot. The environments for the tasks are described previously in Deliverable D8 (IDSIA environments and LUCS marble run game).     

2.6 Reinforcement Learning for Robot Navigation (IDSIA)

A robot equipped with a color camera is placed into a room. The task is to find and move to a randomly placed unique colored cup in the room. The camera is mounted in front of the robot and looks a bit downwards. It has a very limited field of view in relation to the room. Therefore, the robot has to find the cup before it can move to the target position. 

The controller of the robot translates sensor input data to robot movement commands. It is trained by different reinforcement learning methods. In Zhumatiy (2006) the mean position of all camera pixels in a specific color range of the target object is used as input for the reinforcement learner. To reduce the huge amount of memory for the policy a Piecewise Continuous Nearest-Sequence Memory (PC-NSM) algorithm is used for general metrics over state-action trajectories. In Bakker (2006) the visual information from the camera is preprocessed into a 5x4 binary grid, which represents the position of the cup in the camera image, if the cup is visible. To reduce the general long training time for reinforcement learning algorithms for real robots a probabilistic world-model is learned from less real robot experiments. This world-model is then used to make mental experiments on this model to train the controller with Prioritized Sweeping, a modification of the standard Q-Learning algorithm. The policy is applied with a high repetition rate during the learning process of the mental model and with a real time repetition rate in the physical world. 

2.7 Modeling Systems with Internal States (IDSIA)

Current Neural Network learning algorithms are limited in their ability to model nonlinear dynamical systems. Most supervised gradient-based recurrent neural networks (RNNs) suffer from a vanishing error signal that prevents learning from inputs far in the past. The papers introduce a general framework for sequence learning, EVOlution of recurrent systems with LINear outputs (Evolino) (Schmidhuber, Wierstra, Gagliolo, and Gomez, 2007, Wierstra, Gomez, and Schmidhuber, 2005, Schmidhuber, Wierstra, and Gomez, 2005). Evolino uses evolution to discover good RNN hidden node weights, while using methods such as linear regression or quadratic programming to compute optimal linear mappings from hidden state to output. Using the Long Short-Term Memory RNN Architecture, the method is tested in three very different problem domains: 1) context-sensitive languages, 2) multiple superimposed sine waves, and 3) the Mackey-Glass system. Evolino performs exceptionally well across all tasks, where other methods show notable deficiencies in some.

2.8 Neuroevolution for Robot Control (IDSIA)

Recurrent neural networks are theoretically capable of learning complex temporal sequences, but training them through gradient-descent is too slow and unstable for practical use in reinforcement learning environments. Neuroevolution, the evolution of artificial neural networks using genetic algorithms, can potentially solve real-world reinforcement learning tasks that require deep use of memory, i.e. memory spanning hundreds or thousands of inputs, by searching the space of recurrent neural networks directly. In Gomez and Schmidhuber (2005a), a new neuroevolution algorithm called hierarchical Enforced SubPopulations is presented that simultaneously evolves networks at two levels of granularity: full networks and network components or neurons. The paper shows the method in two POMDP tasks that involve temporal dependencies of up to thousands of time-steps, and show that it is faster and simpler than the current best conventional reinforcement learning system on these tasks. 

In practice, almost all control systems in use today implement some form of linear control. However, there are many tasks for which conventional control engineering methods are not directly applicable because there is not enough information about how the system should be controlled (i.e. reinforcement learning problems). Gomez and Schmidhuber (2005b) explores an approach to such problems that evolves fast-weight neural networks. These networks, although capable of implementing arbitrary non-linear mappings, can more easily exploit the piecewise linearity inherent in most systems, in order to produce simpler and more comprehensible controllers. The method is tested on 2D mobile robot version of the pole balancing task where the controller must learn to switch between two operating modes, one using a single pole and the other using a jointed pole version that has not before been solved.

2.9 Toward a Perceptual Symbol System (ISTC/Noze)

ISTC and Noze have explored the possibility for a situated system to evolve what Barsalou calls a perceptual symbol system (Pezzulo and Calvi, 2005). We describe the peculiarities of perceptual symbols and point out the main capabilities of organized, multimodal frames of perceptual symbols called simulators. We present a case study in which perceptual symbols and simulators are evolved and exploited for categorization, prediction and abstraction.

Schemas Fig. 2.9.1 and Fig. 2.9.2 show the pseudo-closed loop between controllers and forward models in perceptual and motor schemas. The controllers send a control signal to the actuators, which integrate them and act accordingly; on the same time, an efference copy of the (final) command signal is sent to the forward models of all the schemas, which compute the next expected input. The dashed lines indicate that a feedback signal is received; in the case of percep- tual routines, this is the stimulus from the fovea (as we will see, the input is represented by the activity level of a set of visual routines, such as detect grey is very active ); in the case of motor routines, the stimulus is the activity level of perceptual schemas and of proprioceptive routines. Some perceptual and motor schemas are thus functionally related, because the motor schemas use as input the activity level of the perceptual schema; we call these schemas coupled perceptual-motor schemas. 

The dashed circles indicate that there is a comparison between the actual input stimulus and the expected stimulus. The degree of (mis)match between them is used for two main functions: (1) Adjustment of Control: the motor commands are adjusted thanks to the feedback signal and can for example compensate time delays, unreliable of absent sensors. (2) Action Selection : schemas have a variable activity level, which means more or less control of action; more active schemas, in fact, process more input, send more commands to the actuators and spread more activation to other schemas. The activity level of the schema represents its relevance : for perceptual schemas it represents a conidence level that a certain entity, encoded in the schema, is or is expected to be present; for motor schemas it represents a conidence level that the behavior encoded in the schema is both applicable and useful in the current situation. We argue that relevance depends on anticipation ; schemas anticipating well get more activation; the rationale is that they are well attuned to the current situation. This is obtained by matching the actual and expected stimulus and assigning activation proportionally to the degree of match, as in (Wolpert and Kawato, 1998). 


[image: image35]
Figure 2.9.1 The mode of a perceptual system
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Figure 2.9.2. The mode of a motor schema

Fig. 2.9.3 shows the components of the architecture: the perceptual and motor schemas (i.e. the components to be evolved); the routines; the actuators. 

The Perceptual Schemas 

As shown in Fig. 2.9.1, each perceptual schema has three components: a detector, a control ler and a forward model. The detector acquires relevant input (pre- conditions) from the the fovea. The controller sends motor commands to the fovea. The forward model predicts the next stimulus, i.e. the activity level of one or more visual routines after the agent’s action. In addition to the mechanism assigning more activation on the basis of anticipation, perceptual schemas get also activation if the stimuli they are specialized for are indeed present in the environment: again, the preconditions in the detector are matched  against the activity level of the corresponding visual  routines and activation is assigned proportionally to  the degree of match. 

Active perceptual schemas in luence the rest of the  architecture in three ways. Firstly, they send motor commands to the fovea, orienting it toward relevant entities; more active schemas send commands with higher fire rate. By orienting the fovea, the schemas are able to partially determine their next input (they have an active vision). In an antici- patory framework, this functionality is mainly used to test the predictions of the forward models: for example, tracking a moving ob ject is a way to acquire new stimuli in order to test the expectations. 

Secondly, they spread activation to the related visual routines, priming them and realizing visual imagery (Kosslyn and Sussman, 1994). For example, track grey schema primes the gray-detector visual routine, even in absence of real stimuli; this functionality can be used to select only relevant stimuli from the fovea and to complete fragmented perceptual inputs. Thirdly, more active perceptual schemas activate more their coupled motor schemas; as above discussed, this leads to re-enacting whole simulators. 

The Motor Schemas 

As shown in Fig. 2.9.2, each motor schema is similar to a perceptual schema and has the same three components. In the detector the preconditions are matched against the activity level of one or more perceptual schemas. For example, the motor routine fol low grey has as a precondition the perceptual routine track grey; this means that if the activity level of the latter is high, the former gains activation, too. The controller sends commands to the motor. The forward model produces expectations about perceptual stimuli to be matched with sensed stimuli. 

The Routines 

The perceptual schemas do not receive raw input from the fovea: a number of preprocessing units, the visual routines, filter fovea information (although with different priority). We have included several feature-specific visual routines specialized for colors, sizes, shapes and motion. The activity level of the visual routine directly encodes the presence of absence of associate entities; for example, an active red-detector encodes the presence of red entities. A similar mediating role is played by the motor routines (such as move right and move left ), commanding the fovea and the motors; in this case, the activity level of move right encodes the turning angle. There are also proprioceptive routines such as move left provid- ing feedback information from the motors.

The Actuators 

The actuators (motor and fovea controllers) receive as input commands from all the active motor routines and perform fuzzy based command fusion (Kosko, 1992). Since routines have different priorities, commands are sent asynchronously and with different fire rates. Again, fire rate encodes priority: more active routines send more commands to the actuators and influences it more. The actuators produce in output two vectors of coordinates < x, y, z > and < x1 , y1 , z1 >, representing the next position of the agent and the next fixation of its fovea (that can zoom), and send them to the physical engine. 
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Figure 2.9.3 The components of the architecture: schemas, routines, actuators.

Experiments 

We implemented the above described architecture by using the framework AKIRA (akira, 2003) and the 3D engine IRRLICHT (irrlicht, 2003). The set-up was a 3D surface with hills (offering partial cover) and involved twenty insects having variable size, colors, shapes and tra jectories. Two agents, both having three schemas for each feature, were com- pared: the former (PS ) only learned in the first phase; the latter (SIM ) also learned in the second phase. During the first learning phase up to five insects were present together in the environment; the agent learned the forward models of its schemas by interacting with them. One example was sampled every twelve, with a total of thirty-six; the learning stopped when the error (the euclidean distance between the actual and predicted position in 3D, 0.1 ∗ 10− 6 ) was less than 0,0000001 (positions vary between -10000 and +10000 in the three axes). 

During the second learning phase (one session lasting three minutes) links between schemas were evolved, too. K-means cluster analysis (using euclidean distance of the activity level of the schemas in time) was used for investigating how many simulators evolved; since the result was sixteen, we removed from the set-up four “aliased” insects. As an example, fig. 5 shows a sample timeline involving four schemas during an interaction with one insect. K-means analysis (number of classes = 2, euclidean distance k-means = 0,53) shows that the first three have coordinated activity patterns and form a cluster (which we interpret as a simulator), while the fourth is unrelated; it has a low activity level, too, since it is not very relevant. 

In order to test the efficacy of simulators we designed two tasks: categorization and prediction with three levels of complexity: recal l (involving insects used for learning); generalization 75% and 50% (involving insects sharing 75% and 50% of the features with the ones used for learning). Our hypothesis is that SIM performs better in all the conditions. 

Categorization One insect per time is in the scenario and the tasks consists for the agent in categorizing it by activating the relevant cluster of schemas. As above described, the sixteen clusters of SIM were determined with cluster analysis and interpreted as simulators. We adopted k-means cluster analysis for PS, too, also obtaining sixteen clusters. We thus evaluated the reliability of the clusters by considering how many times the same ones were active when the same insects were in play. The cluster maximizing active schemas total schemas was considered the selected category. 

Since simulators compete for limited resources and an active simulator inhibits the other ones there was often an unambiguous way to determine the category in SIM, while in PS the most active clusters often involved different schemas. The percentage of correctly categorized insects in 100 simulations is shown in Tab. 1; SIM categorizes signiicantly better than PS (p < 0,001 in all the conditions). 
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Prediction The task consists in successfully tracking the insects (presented singularly) from a start to an end point. Since all the active schemas send commands to the actuators, the task is an evaluation of the “coherence” of the simulators. We collected data about the mean error in prediction (in %) through-out the tra jectory of the final position calculated by the controllers. Results in 100 simulations are shown in Tab. 2; SIM predicts significantly better than PS (p < 0,001 both for track and follow). Abstraction In the same setup we also designed an abstraction task for testing an agent after the 

third learning phase. The task consists in surviving in an environment including preys and preda- tors. We compared two agents, both having the same schemas and drives described in the third learning phase. The former (NO-ABS ) only learned in the first two phases; the latter (ABS ) learned as described in the third phase, too. Drives satisfaction was used as success metric: each agent had to satisfy its drives, fear and hungriness, i.e. keep their values close to zero. Since in order to satisfy the drives the agents have to abstract appropriately, distinguishing preys from predators, this task permits to evaluate the appropriateness of the simulators for abstract concepts. Our hypothesis is that, with the intro- duction of two drives, two more simulators arise for predators and preys. We collected data about mean satisfaction, calculated as 1 − mean drive value, in 100 simulations. Tab. 3 shows the results of our simulations; ABS predicts significantly better than NO- ABS (p < 0,001 both for hungriness and fear). 

Discussion Our results indicate that after the first two learning phases an agent is able to categorize and predict even if, not surprisingly, its performance degradates when new insects with few features in common are introduced. After the third phase it is also able to abstract the role of the insects. Our results indicate a signiicant advantage of using simulators in all the tasks. Simulators categorize and predict better than simple clusters: in many cases one single schema is doomed to fail (e.g., because its forward model is not totally reliable or because inputs are aliased or missing or partially unpredictable), but a coordinated set of schemas can reach a cooperative solution, prime and compensate each other. It is worth noting that in the abstraction task typically both the simulator for the insect (e.g. insect#3 ) and for its role (e.g. prey ) arise (and they partially overlap). Depending on the task, the former or the latter become more relevant: we have tested ABS in the categorization and prediction tasks and its per- formance does not significantly differ from SIM. 

2.10 An active vision system (NBU/LUCS)

LUCS and NBU together developed an an active vision system which is used to give input to the AMBR system. The visual component uses Ikaros to find colored objects in a scene and categorizes them according to color and simple shape features (Figure 2.10.1). This information is further processed in a system called AMBR2Robot which can handle different more complex perceptual requests, such as

(1) spatial relations: right-of, in-front-of, in-front-right-of, etc... 

(2) sameness relations: same-colour, unique-shape, etc... 

(3) colour properties: orange, blue, red, etc... 
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Figure 2.10.1. (a & b) chromaticity transformation, (c) edge historgram for the upper cube, (d) initial color coded image, (e) the processing of a spatial relation request.

3. Robot Systems

This section describes some of the robotic systems developed for the Mind RACES project that are used within WP3.

3.1 Multi-Robot Set-Up 1 - BoeBots (LUCS)

The first multi-robot set up used BoeBots. which are simple and cheap robots that where used as the initial platform (Johansson & Balkenius, 2007). The system consists of small two wheeled robots that are able to navigate through a dynamic environment. The robots are an modified version of the BoeBot robot manufactured by Parallax. 

The complexity of the environment can be adjusted using movable bricks. The robots and obstacles are tracked by color markers attach on top of both robots and obstacle. White indicates that there is an obstacle and for the robots two colors are used to get the position and orientation of the robot. This color tracking is made by Ikaros (www.ikaros-project.org) using an overhead camera. All the navigation calculation is made by Ikaros and is also responsible for transmitting bluetooth commands to the robots.

Environment

The size of the area where the robots are allowed to navigate is 2x2 m. This area is surrounded by 20 cm high wall that keeps the robots in place if the system loses control and also gives an excellent protection from confused cognitive scientist's walking to close the robots. 

The wall is white and the area within the wall is grainy gray. The obstacles have a similar color as the floor but are marked  white at the top. The white color, on both the obstacles and the surrounding wall, is interpreted as obstacles or as something were the robots are not allowed to be. The bricks used are 5x13x21 cm which is the same height as the BoeBot robots. Each corner of the robot area has been rounded to reduce the risk of getting trapped in corners.
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Figure 3.1.1. The robot area with two BoeBots.

Robots

The robots used are modified Boe-bots (Parallax Inc., Rocklin, California, www.parallax.com). These robots are mainly used for education and are easy to learn and use. The height of the BoeBots have been adjusted to fit the height of the obstacles. The reason for this were constraints in the lab where it was not possible to position the overhead camera straight above the robot area, instead we had to mount the camera in an oblique angle and transform the images to what it had looked if it were mounted at the desired position.

The dimensions of the robots, with the extended height, are 11.5x13x21 cm. They use differential steering which is controlled by a Basic Stamp and can move in a velocity from approximately -0.17m/s to + 0.17m/s.

On board the robots is a small prototype board where circuits can be assembled and tested. The robot operates on between 6-9 V and this is provided by four AA batteries mounted underneath. The robots are expanded with an embedded bluetooth card for communication. This card enables bluetooth communication with keyword security between robots or between a computer with emulated serial communication over bluetooth. 

There exist a number of additional sensors for the BoeBots (camera, encoders, ir sensors, etc.), but in our setting, no onboard sensors are used. Instead we use the overhead camera and a computer to track the position and orientation of the robots.
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Figure 3.1.2. Left. The modified BoeBot. Right. The colored marker used to simplify the tracking of the robot.

The figure below shows the design of the overall control system and the different Ikaros modules used to control the robots.
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Figure 3.1.3. The robot set-up consists of a tracking subsystem, a world model and a central navigation system which also collects statistics and saves various experiment data. The robots can also be manually controlled from a simple user interface.

3.2 Multi-Robot Set-Up 2 - e-pucks (LUCS)

Because of the limited precision of the BoeBots, LUCS has moved to a new multi-robot set-up where six e-pucks are used instead. The e-puck robots have a bluetooth interface built in. They use stepper motors rather than rebuilt RC servos to control the wheels, which makes the precision of their movements much higher than the BoeBots.

In addition to changing the robots, LUCS has also moved the control software from a single laptop to an eight node Linux cluster. The cluster runs a distributed version of the Ikaros system, where each of six nodes is responsible for controlling a single e-puck. Every node has its own bluetooth interface that allows it to communicate with the corresponding robot without interfering wit the other nodes. The different nodes communicate through an internal gigabit network in the cluster. There are also separate communication channels to the outside world through a single communication node. This node is also responsible for the visual tracking of the robots and for the collection of tracking data and statistics during experiments.

The Ikaros version running on the cluster is fully multithreaded and can be distributed into multiple processes. Currently each node runs only a single process which has multiple communication channels through BSD sockets with the processes on the other nodes. The code is optimized to use the vector operations of the floating point processors in the nodes and takes full advantage of the SSE3 instructions (and AltiVec when run on the PPC architecture). Ikaros runs in real-time mode at millisecond resolution and the different nodes are synchronized over the internal network. All the code for this system will be made available as open source.
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Figure 3.2.1. Left. The e-puck robots (and the BoeBots in the background). Right. The eight node Linux cluster used to control the robots.

3.3 Single-Robot Set-Up 1 - MiniBot (LUCS)

To investigate anticipation in a mobile robot with a visual systemn and a simple manipulator, LUCS designed the MiniBot. This robot uses a standard differential steering with two geared DC motors with built-in encoders. A standard FireWire camera is used for the vision system.

A Mac Mini which was modified to be run from a 12V battery is used as an embedded controller. The Mac Mini runs the Ikaros system and is also connected to a remote computer over wireless network. During development. the Mac Mini is mounted as an external filesystem which allows compilation of new code from a remote host directly to the controller. New code is automatically started on the robot as the last step in compilation. The robot also uses Ikaros embedded web server to allow a remote laptop to function as a user interface. Dynamic SVG images are served over the wireless network to allow the status of the robot to be monitored remotely. The robot also has small on-board monitor which can be used for debugging purposes.
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Figure 3.3.1. The MiniBot, here without the 3 dof arm.

For manipulation, the robot is equipped with a 3 dof arm. This arm is build around three digital RC servos and controlled though a SCC32 controller. The Mac Mini communicates with the arm controller using a USB interface. The digital servos in the joints have sufficient speed, torque and precision to allow smooth movements of the manipulator which is currently a fishing rod. The SCC32 controller is well suited for the task of smoothly moving the manipulator since it internally generates coordinated smooth trajectories for the servos. 

3.4 Single-Robot Set-Up 2 - AIBO (NBU)

NBU has developed a set-up with an AIBO robot that consists of several main modules (Figure 3.4.1). (1) AMBR – the core of the system, it is responsible for attention and top-down perceptual processing, for reasoning by analogy, for decision making, and for sending a motor command to the robot controller. (2) IKAROS module – a low-level perception module performing bottom up information processing. (3)AMBR2Robot – a mediation module, the link between AMBR and IKAROS and the robot controller. (4) AIBO robot. (5) Camera attached to the ceiling. 
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Figure 3.4.1. The AIBO with tracking markers on the back.

A global camera takes visual information of the environment. It is received by the IKAROS module. The visual information is processed and symbolic information about objects in the environment is produced. This symbolic information is used from AMBR2Robot to provide AMBR with bottom-up perception information and also to handle the top-down requests which are described below. ABMR2Robot also waits for a “do-action” message from AMBR, which when received makes the module to control the robot and guide it to the target position using AIBO Remote framework. AMBR does the substantial job of making predictions about where the bone is hidden based on the representation of the current situation and making analogy with past situations. AIBO Remote Framework is a Windows PC application development environment which enables the communication with and control of AIBO robots via wireless LAN. 

4. Conclusion

The results reported above show that much progress has been made toward a better understanding of anticipation. monitoring and control. A number of new algorithms and methods have been developed that clearly extends the current state of the art. New prediction and anticipation algorithms have been developed and tested in simulation and in robots. Several novel attention and perception components have also been developed which includes different forms of learning.

The complete description of the different results can be found in the original papers at the MindRACES web site (www.mindraces.org).

References

B. Bakker, V. Zhumatiy, G. Gruener, J. Schmidhuber (2006). Quasi-Online Reinforcement Learning for Robots. ICRA 2006.

Balkenius, C. and Johansson, B. (2007). Anticipatory Models in Gaze Control: A Developmental Model. Cognitive Processing, in press.

Balkenius, C. , Åström. K. & Eriksson, A. P. (2007). A learning saliency map. in prep.

F. Gomez and J. Schmidhuber (2005). Co-Evolving Recurrent Neurons Learn Deep Memory POMDPs. In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-05, Washington, D.C.). Nominated for Best Paper in Coevolution

F. Gomez and J. Schmidhuber (2005). Evolving Modular Fast-Weight Networks for Control. In Proceedings of the International Conference on Artificial Neural Networks (ICANN-05, Warsaw).

Gers, F. A., Schmidhuber, J., & Cummins, F. (2000). Learning to forget: Continual prediction with LSTM. Neural Computation , 12 , 2451–2471. 

Giese, M. A., & Poggio, T. (2003). Neural mechanisms for the recogniton of biological movements. Nature Reviews Neuroscience , 4 , 179–192. 

Hawkins, F., & George, D. (2006). Hierarchical temporal memory: Concepts, theory, and terminology (Technical Report). Numenta Inc. http://www.numenta.com/Numenta HTM Concepts.pdf. 

Haykin, S. (2002). Adaptive filter theory (4th edition ed.). Upper Saddle River, NJ: Prentice Hall. 

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation , 9 , 1735–1780. 

Johansson, B. & Balkenius, C. (2007). A multi-robot system for anticipatory experiments. LUCS Minor, in press.

Kalman, R. E. (1960). A new approach to linear filtering and prediction problems. Transactions of the ASME-Journal of Basic Engineering , 82 (Series D), 35–45. 

Kiril Kiryazov, Georgi Petkov, Maurice Grinberg, Boicho Kokinov, Christian Balkenius (2007). The Interplay of Analogy-Making with Active Vision and Motor Control in Anticipatory Robots. In: Anticipatory Behavior in Adaptive Learning Systems: From Brains to Individual and Social Behavior, LNAI number 4520, in press

Lecun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE , 86 , 2278–2324. 

Georgi Petkov, Kiril Kiryazov, Maurice Grinberg, Boicho Kokinov (2007) Modeling Top-Down Perception and Analogical Transfer with Single Anticipatory Mechanism. In: Proceedings of the Second European Cognitive Science Conference, Greece, in press .

Pezzulo, G. & Calvi, G. Toward a Perceptual Symbol System Proceedings of the Sixth International Conference on Epigenetic Robotics: Modeling Cognitive Development in Robotic Systems, Lund University Cognitive Science Studies 118, 2006. 

Pezzulo, G.; Calvi, G.; Ognibene, D. & Lalia, D. Fuzzy-based Schema Mechanisms in AKIRA CIMCA '05: Proceedings of the International Conference on Computational Intelligence for Modelling, Control and Automation and International Conference on Intelligent Agents, Web Technologies and Internet Commerce Vol-2 (CIMCA-IAWTIC'06), IEEE Computer Society, 2005, 146-152

Pezzulo, G. & Calvi, G. Toward a Perceptual Symbol System Proceedings of the Sixth International Conference on Epigenetic Robotics: Modeling Cognitive Development in Robotic Systems, Lund University Cognitive Science Studies 118, 2006.

Perez-Ortiz, J. A., Gers, F. A., Eck, D., & Schmidhuber, J. (2003). Kalman filters improve LSTM network performance in problems unsolvable by traditional recurrent nets. Neural Networks , 16 , 241–250. 

Petkov, G., Naydenov, Ch., Grinberg, M., Kokinov, B. (2006) Building Robots with Analogy-Based Anticition. In: Proceedings of the KI 2006, 29th German Conference on Artificial Intelligence, Bremen, in press.

Poggio, T., & Bizzi, E. (2004). Generalization in vision and motor control. Nature , 431 , 768–774. 

Rao, R. P. N., & Ballard, D. H. (1997). Dynamic model of visual recognition predicts neural response properties in the visual cortex. Neural Computation , 9 , 721–763. 

Rao, R. P. N., & Ballard, D. H. (1999). Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. Nature Neuroscience , 2 (1), 79–87. 

Riesenhuber, M., & Poggio, T. (1999). Hierarchical models of ob ject recognition in cortex. Nature Neuroscience , 2 , 1019–1025. 

D. Ron, Y. Singer and N. Tishby, "Learning Probabilistic Automata with Variable Memory Length", in Computational Learing Theory,  pp 35-46, 1994.

D. Ron, Y. Singer and N. Tishby, (1996). "The Power of Amnesia: Learning Probabilistic Automata with Variable Memory Length", Machine Learning 25,2-3, pp 117-149,

J. Schmidhuber, D. Wierstra, and F. Gomez (2005). Evolino: Hybrid Neuroevolution / Optimal Linear Search for Sequence Learning. In Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI-05, Edinburgh).

J. Schmidhuber, D. Wierstra, M. Gagliolo, F. Gomez (2007). Training Recurrent Neural Networks by Evolino. Neural Computation, vol. 19, nr. 3, pp. 757-779.

Taylor, J., Hartley, M., & Taylor, N. (2005). Attention as sigma-pi controlled ach-based feedback. Neural Networks, 2005. IJCNN ’05. Proceedings , 1 , 256– 261. 

P. Tino and G. Dorffner, "Constructing finite-context sources from fractal representations of symbolic sequences".  Technical Report TR-98-18, Austrian Research Institute for Artificial Intelligence, Austria, 1998.

Weber, C. (2001). Self-organization of orientation maps, lateral connections, and dynamic receptive fields in the primary visual cortex. Artificial Neural Networks - ICANN 2001 : International Conference Vienna, Austria, August 21-25, 2001, Proceedings , 1147. 

Weber, C., & Wermter, S. (2003). Ob ject localisation using laterally connected ”what” and ”where” associator networks. Proceedings of the 2003 International Conference on Artificial Neural Networks , 813–820. 

Weber, C., Wermter, S., & Elshaw, M. (2006). A hybrid generative and predictive model of the motor cortex. Neural Networks , 19, 339–53. 

D. Wierstra, F. Gomez, and J. Schmidhuber (2005). Modeling Systems with Internal State using Evolino. In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-05, Washington, D.C.). Winner of Best Paper Award in Learning Classifier Systems and Other Genetics-Based Machine Learning.

V. Zhumatiy, F. Gomez, M. Hutter, and J. Schmidhuber (2006). Metric State Space Reinforcement Learning for a Vision-Capable Mobile Robot, Proc. of the Int'l Conf. on Intelligent Autonomous Systems, IAS-06, Tokyo, 2006.

Zimmermann, H.-G., Grothmann, R., Sch ̈afer, A. M., & Tietz, C. (2005). Modeling large dynamical systems with dynamical consistent neural networks. In Haykin, Principe, Sejnowski, & McWhirter (Eds.), New Directions in Statistical Signal Processing: From Systems to Brain (pp. 1–42). MIT Press. 


[image: image50.png]{!‘ImD



[image: image51.jpg]Cognitive Systems



[image: image52.png]0220




[image: image53.png]15

10

10

s

20

25

30



[image: image54.png]B

o]




[image: image55.png]Markov model with fixed memory length vs.
Probabilistic Automata with variable memory length
(longer memory only where needed):

;{}1 / 2

111 112 1121 12112
121 122 2121 22112
211 212 221 1112
221 222 11 212



[image: image56.png]True Forecas

0 0

3 5
o
£ 1 10
=

15 15

0 20

15



[image: image57.png]Time

kil

True

Forecas

20



[image: image58.png]bl bl
[ — 0

60 60

EY &

100 100

e T

ERET T EEECEED

—————— 4
100

0 " 2

0
pil

(] 50 100 150 0 7 4 6



[image: image59.png]Time

True

Forecas




[image: image60.png]Time

True

Forecas




[image: image61.png]Time

True

Forecas




[image: image62.png]B

o]




[image: image63.png]60
w0l e

Eil

08
06
04
02

08




[image: image64.png]60

0

Eil

Eil
5]

a0

60

06




[image: image65.png]60

0

Eil

08
06
04

02




[image: image66.png]Bayesian-
based
movement
derivatio

a-Pl based visual prediction



[image: image67.png]W Y Fe )



[image: image68.png]


[image: image69.png]


[image: image70.png]Bt =8 +abFlz e



[image: image71.png]st

3 stz iGle olE - 2,0 w)



[image: image72.png]Seerlze-ri—r) = Borlze—r o) + b




[image: image73.png](e




[image: image74.png]aft+1)

(t) + aelt - 7)plt —i),



[image: image75.png]targer
atan

fishing
rod




[image: image76.png]MMMMM



[image: image77.png]Pt+1 =



[image: image78.png]Pt+1 =

1—e

Y43
Di—1



[image: image79.png]


[image: image80.png]


[image: image81.png]p— n
St4n — M St



[image: image82.png]


[image: image83.png]


[image: image84.jpg]


[image: image85.png]


[image: image86.png]


[image: image87.png]


[image: image88.png]AgentRecall Gen. 75% _Gen. 50%
B o i
I e

T 1 oo pesrneags o s

Ag. Schoma Ree. G.75% G.50%
PST Tme 02% 0% 0%
PSElw oaUL 0ET 06%
Sne T ol 020% 0
Sne o Elw W 02 01

Tl 3 Prsticion: mens e in ¢



[image: image89.png]


[image: image90.png]


[image: image91.png]


[image: image92.png]


[image: image93.png]


[image: image94.png]


[image: image95.png]Robot Setup




[image: image96.jpg]


[image: image97.jpg]


[image: image98.png]


